, Volume 71, Issue 3, pp 599–610

Impedance analysis of Bi3.25La0.75Ti3O12 ferroelectric ceramic



AC impedance spectroscopy technique has been used to study electrical properties of Bi3.25La0.75Ti3O12 (BLT) ceramic. Complex impedance plots were fitted with three depressed semicircles, which are attributed to crystalline layer, plate boundary and grain boundary and all three were found to comprise of universal capacitance nature [C = C0wn−1]. Grain boundary resistance and capacitance evaluated from complex impedance plots have larger values than that of plate boundary and crystalline layer. The activation energies (Ea) for DC-conductance in grain boundary, plate boundary and crystalline layer are 0.68 eV, 0.89 eV and 0.89 eV, respectively. Relaxation activation energies calculated from impedance plots showed similar values, 0.81 eV and 0.80 eV for crystalline layer and plate boundary, respectively. These activation energy values are found to be consistent with the Ea value of oxygen vacancies in perovskite materials. A mechanism is offered to explain the generation of oxygen vacancies in BLT ceramic and its role in temperature dependence of DC-conductance study.


Ferroelectric memories impedance Bi-layered structure oxygenion-jump 


84.37.+q 77.84.-S 85.50.Gk 82.45.Xy 77.84.Lf 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B H Park, B S Kang, S Bu, T W Noh, J Lee and W Jo, Nature (London) 401, 682 (1999)CrossRefADSGoogle Scholar
  2. [2]
    E Rokuta, J H Choi, Y Hotta, H Tabata, H Kobayashi and T Kawai, Appl. Phys. Lett. 79, 1858 (2001)CrossRefADSGoogle Scholar
  3. [3]
    B Aurivillius, Ark Kemi 1, 499 (1949)Google Scholar
  4. [4]
    J F Scott and C A Pazde Arajuo, Science 246, 1400 (1989)CrossRefADSGoogle Scholar
  5. [5]
    C A Paz de Araujo, J D Cuchiaro, L D McMillan, M C Scott and J F Scott, Nature (London) 374, 627 (1995)CrossRefADSGoogle Scholar
  6. [6]
    S B Desu and D P Vijay, Mater. Sci. Engg. B32, 75 (1995)Google Scholar
  7. [7]
    E C Subbarao, J. Phys. Chem. Solids 23, 665 (1962)CrossRefADSGoogle Scholar
  8. [8]
    C Javalekic and S Stevic, Ferroelectrics 132, 185 (1992)Google Scholar
  9. [9]
    S E Cummins and L E Cross, J. Appl. Phys. 39, 2268 (1968)CrossRefADSGoogle Scholar
  10. [10]
    P C Joshi and S B Krupanidhi, Appl. Phys. Lett. 62, 1928 (1993)CrossRefADSGoogle Scholar
  11. [11]
    T Kijima, M Ushikubo and M Matsunaga, Jpn. J. Appl. Phys. 38, 127 (1999)CrossRefADSGoogle Scholar
  12. [12]
    A Fouskova and L E Cross, J. Appl. Phys. 41, 2834 (1970)CrossRefADSGoogle Scholar
  13. [13]
    S Eharta, K Muramatsu, M Shimazu, J Tanaka, M Tsukioka, Y Mori, T Hattori and H Tamura, Jpn. J. Appl. Phys. 20, 877 (1981)CrossRefADSGoogle Scholar
  14. [14]
    Masatake Takahashi, Yuji Noguchi and Masaru Miyayama, Jpn. J. Appl. Phys. 41, 7053 (2002)CrossRefADSGoogle Scholar
  15. [15]
    J H Park, J S Bae, B C Choi and J H Jeong, J. Phys. D40, 579 (2007)ADSGoogle Scholar
  16. [16]
    D Johnson, Software Zview-v 2.3d, Scribner Associates Inc. (2000)Google Scholar
  17. [17]
    A Huanosta, O Alvarez-Fregoso and E Amano, J. Appl. Phys. 69, 404 (1991)CrossRefADSGoogle Scholar
  18. [18]
    T Takenaka and K Sakata, Ferroelectrics 38, 769 (1981)Google Scholar
  19. [19]
    W D Kingery, H K Bowen and D R Uhlmann, Introduction to ceramics (Wiley, New York, 1976)Google Scholar
  20. [20]
    K H Hardtl, Ceram. Int. 8(4), 121 (1982)CrossRefGoogle Scholar
  21. [21]
    Holly S Shulman, J. Am. Ceram. Soc. 80(3), 528 (2000)Google Scholar
  22. [22]
    Z S Macedo, C R Ferrari and A C Hernandes, J. European Ceramic Soc. 24, 2567 (2004)CrossRefGoogle Scholar
  23. [23]
    J R MacDonald, Impedance spectroscopy — emphasizing solid materials and systems (John Wiley & Sons, 1987)Google Scholar
  24. [24]
    A K Jonscher, Dielectric relaxation in solids (Chelsea, London, 1983)Google Scholar
  25. [25]
    X S Gao, J M Xue and J Wang, J. Appl. Phys. 97, 034101 (2005)Google Scholar
  26. [26]
    A Pelaiz-Barranco, M P Gutierrez-Amador, A Huanosta and R Valenzuela, Appl. Phys. Lett. 73(14), 2039 (1998)CrossRefADSGoogle Scholar
  27. [27]
    O A Fregoso, J. Appl. Phys. 81, 1387 (1997)CrossRefADSGoogle Scholar
  28. [28]
    W Li, D Su, J Zhu and Y Wang, Solid State Commun. 131, 189 (2004)CrossRefADSGoogle Scholar
  29. [29]
    S K Kim, M Miyayama and H Yanagida, Mater. Res. Bull. 31, 121 (1996)CrossRefGoogle Scholar
  30. [30]
    A D Brailsford and D K Honke, Solid State Ionics 11, 235 (1983)Google Scholar
  31. [31]
    S Rachna, Sudipto Bhattacharyya and S M Gupta, J. Phys. Chem. Solids 69, 822 (2008)CrossRefADSGoogle Scholar
  32. [32]
    H N Al-Shareef, D Dimos, T J Boyle, W L Warren and B A Tuttle, Appl. Phys. Lett. 68, 690 (1996)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Laser Materials Development and Devices DivisionRaja Ramanna Centre for Advanced TechnologyIndoreIndia
  2. 2.Department of Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA

Personalised recommendations