, Volume 70, Issue 6, pp 1087–1097 | Cite as

Complex brain networks: From topological communities to clustered dynamics

  • Lucia Zemanová
  • Gorka Zamora-López
  • Changsong ZhouEmail author
  • Jürgen Kurths


Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. A challenging task is to understand the implications of such network structures on the functional organisation of the brain activities. We investigate synchronisation dynamics on the corticocortical network of the cat by modelling each node of the network (cortical area) with a subnetwork of interacting excitable neurons. We find that this network of networks displays clustered synchronisation behaviour and the dynamical clusters closely coincide with the topological community structures observed in the anatomical network. The correlation between the firing rate of the areas and the areal intensity is additionally examined. Our results provide insights into the relationship between the global organisation and the functional specialisation of the brain cortex.


Cortical networks multilevel model anatomical hierarchy functional hierarchy clustered synchronisation 


87.18.Sn 89.75.Da 89.75.Fb 05.45.Xt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D J Watts and S H Strogatz, Nature (London) 393, 440 (1998)CrossRefADSGoogle Scholar
  2. [1a]
    A-L Barabási and R Albert, Science 286, 509 (1999)CrossRefMathSciNetGoogle Scholar
  3. [1b]
    S Boccaletti, V Latora, Y Moreno, M Chavez and D-U Hwang, Phys. Rep. 424, 175 (2006)CrossRefADSMathSciNetGoogle Scholar
  4. [2]
    A Arenas, A Díaz-Guilera and C J Pérez-Vicente, Phys. Rev. Lett. 96, 114102 (2006)Google Scholar
  5. [2a]
    C S Zhou, A E Motter and J Kurths, Phys. Rev. Lett. 96, 034101 (2006)Google Scholar
  6. [3]
    O Sporns, D R Chialvo, M Kaiser and C C Hilgetag, Trends Cogn. Sci. 8, 418 (2004)CrossRefGoogle Scholar
  7. [3a]
    O Sporns, G Tononi and G M Edelman, Behav. Brain. Res. 135, 69 (2002)CrossRefGoogle Scholar
  8. [3b]
    D S Bassett and E Bullmore, Neuroscientist 12(6), 512 (2006)CrossRefGoogle Scholar
  9. [4]
    V M Eguíluz, D R Chialvo, G Cecchi, M Baliki and A V Apkarian, Phys. Rev. Lett. 94, 018102 (2005)Google Scholar
  10. [4a]
    C J Stam, B F Jones, G Nolte, M Breaskpear and P Scheltens, Cereb. Cortex 26(1), 63 (2006)Google Scholar
  11. [5]
    F H Lopes da Silva, A Hoeks, H Smits and L H Zetterberg, Kybernetik 15, 27 (1974)CrossRefGoogle Scholar
  12. [5a]
    F Wendling, J J Bellanger, F Bartolomei and P Chauvel, Biol. Cybern. 83, 367 (2000)CrossRefGoogle Scholar
  13. [5b]
    C J Honey, R Kötter, M Breakspear and O Sporns, Proc. Natl. Acad. Sci. 104(24), 10240 (2007)Google Scholar
  14. [6]
    R Kötter and F T Sommer, Philos. Trans. R. Soc. London B355, 127 (2000)Google Scholar
  15. [6a]
    M P Young, C C Hilgetag and J W Scannell, Philos. Trans. R. Soc. London B355, 147 (2000)Google Scholar
  16. [7]
    J W Scannell, G A P C Burns, C C Hilgetag, M A O’Neill and M P Young, Cereb. Cortex 9, 277 (1999)CrossRefGoogle Scholar
  17. [8]
    C C Hilgetag, G A Burns, M A O’Neill, J W Scannell and M P Young, Philos. Trans. R. Soc. London B355, 91 (2000)Google Scholar
  18. [9]
    A S Pikovsky and J Kurths, Phys. Rev. Lett. 78(5), 775 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. [10]
    M P Young, Spatial Vis. 13, 137 (2000)CrossRefGoogle Scholar
  20. [11]
    L Zemanová, C S Zhou and J Kurths, Physica D224, 202 (2006)ADSGoogle Scholar
  21. [11a]
    C S Zhou, L Zemanová, G Zamora, C C Hilgetag and J Kurths, Phys. Rev. Lett. 97, 238103 (2006)Google Scholar
  22. [11b]
    C S Zhou, L Zemanová, G Zamora-López, C C Hilgetag and J Kurths, New J. Phys. 9, 178 (2007)CrossRefADSGoogle Scholar
  23. [12]
    E Niedermeyer and F Lopes da Silva, Electroencephalography: Basic principles, clinical applications, and related fields (Williams & Wilkins, 1993)Google Scholar
  24. [13]
    P Kudela, P J Franaszczuk and G K Bergey, Biol. Cybern. 88, 276 (2003)zbMATHCrossRefGoogle Scholar
  25. [14]
    M Barbosa, K Dockendorf, M Escalona, B Ibarz, A Miliotis, I Sendiña-Nadal, G Zamora and L Zemanová, Parallel computation of large neuronal networks with structured connectivity, in Lectures in supercomputational neuroscience: Dynamics in complex brain networks edited by P Beim Graben, C S Zhou, M Thiel and J Kurths (Springer, Berlin, 2007)Google Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  • Lucia Zemanová
    • 1
  • Gorka Zamora-López
    • 1
  • Changsong Zhou
    • 2
    Email author
  • Jürgen Kurths
    • 1
  1. 1.Institute of PhysicsUniversity of Potsdam14469Germany
  2. 2.Department of PhysicsHong Kong Baptist UniversityKowloon TongChina

Personalised recommendations