, Volume 70, Issue 2, pp 263–270 | Cite as

A first-principles study of phase transitions in ultrathin films of BaTiO3

  • J. Paul
  • T. Nishimatsu
  • Y. Kawazoe
  • U. V. Waghmare


We determine the effects of film thickness, epitaxial strain and the nature of electrodes on ferroelectric phase transitions in ultrathin films of BaTiO3 using a first-principles effective Hamiltonian in classical molecular dynamics simulations. We present results for polarization and dielectric properties as a function of temperature and epitaxial strain, leading to size-dependent temperature-strain phase diagram for the films sandwiched between ‘perfect’ electrodes. In the presence of non-vanishing depolarization fields when non-ideal electrodes are used, we show that a stable stripe-domain phase is obtained at low temperatures. The electrostatic images in the presence of electrodes and their interaction with local dipoles in the film explain these observed phenomena.


Ferroelectric phase transition polarization epitaxial strain electrodes 


77.90.+k 77.22.Ej 77.80.-e 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M E Lines and A M Glass, Principles and applications of ferroelectrics and related materials (Oxford University Press, New York, 1977)Google Scholar
  2. [2]
    J F Scott and C A P de Araujo, Science 246, 1400 (1989)CrossRefADSGoogle Scholar
  3. [3]
    C H Ahn, K M Rabe and J M Triscone, Science 303, 488 (2004)CrossRefADSGoogle Scholar
  4. [4]
    K J Choi, M Biegalski, Y L Li, A Sharan, J Schubert, R Uecker, P Reiche, Y B Chen, X Q Pan, V Gopala, L Q Chen, D G Schlom and C B Eom, Science 306, 1005 (2004)CrossRefADSGoogle Scholar
  5. [5]
    J Junquera and P Ghosez, Nature (London) 422, 506 (2003)CrossRefADSGoogle Scholar
  6. [6]
    D D Fong, G B Stephenson, S K Streiffer, J A Eastman, O Auciello, P H Fuoss and C Thompson, Science 304, 1650 (2004)CrossRefADSGoogle Scholar
  7. [7]
    J Paul, T Nishimatsu, Y Kawazoe and U V Waghmare, Phys. Rev. Lett. (in press)Google Scholar
  8. [8]
    W Zhong, D Vanderbilt and K M Rabe, Phys. Rev. Lett. 73, 1861 (1994)CrossRefADSGoogle Scholar
  9. [9]
    W Zhong, D Vanderbilt and K M Rabe, Phys. Rev. B52, 6301 (1995)ADSGoogle Scholar
  10. [10]
    M Dawber, P Chandra, P B Littlewood and J F Scott, J. Phys.: Condens. Matter 15, L393 (2003)CrossRefADSGoogle Scholar
  11. [11]
    U V Waghmare, E J Cockayne and B P Burton, Ferroelectrics 291, 187 (2003)CrossRefGoogle Scholar
  12. [12]
    B P Burton, E J Cockayne and U V Waghmare, Phys. Rev. B72, 064113 (2005)Google Scholar
  13. [13]
    S D Bond, B J Leimkuhler and B B Laird, J. Comput. Phys. 151, 114 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  14. [14]
    O Diéguez, S Tinte, A Antons, C Bungaro, J B Neaton, K M Rabe and D Vanderbilt, Phys. Rev. B69, 212101 (2004)Google Scholar
  15. [15]
    N A Pertsev, A G Zembilgotov and A K Tagantsev, Phys. Rev. Lett. 80, 1988 (1998)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  • J. Paul
    • 1
  • T. Nishimatsu
    • 2
    • 3
  • Y. Kawazoe
    • 2
  • U. V. Waghmare
    • 1
  1. 1.Theoretical Sciences UnitJawaharlal Nehru Centre for Advanced Scientific ResearchJakkur, BangaloreIndia
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan
  3. 3.Rutgers UniversityPiscatawayUSA

Personalised recommendations