Pramana

, Volume 70, Issue 2, pp 211–220 | Cite as

Localization in disordered systems with interactions

Article

Abstract

We present an improved numerical approach to the study of disorder and interactions in quasi-1D systems which combines aspects of the transfer matrix method and the density matrix renormalization group which have been successfully applied to disorder and interacting problems respectively. The method is applied to spinless fermions in 1D and a generalization to finite cross-sections is outlined.

Keywords

Disorder interactions transport Anderson transition 

PACS Nos

71.30.+h 71.55.Jv 72.15.Rn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K Slevin and T Ohtsuki, Phys. Rev. Lett. 82(2), 382 (1999)CrossRefADSGoogle Scholar
  2. [2]
    S V Kravchenko, G V Kravchenko, J E Furneaux, V M Pudalov and M d’Iorio, Phys. Rev. B50(11), 8039 (1994)ADSGoogle Scholar
  3. [3]
    D L Shepelyansky, Phys. Rev. Lett. 73(19), 2607 (1994)CrossRefADSGoogle Scholar
  4. [4]
    M Ortuño and E Cuevas, Europhys. Lett. 46, 224 (1999)CrossRefADSGoogle Scholar
  5. [5]
    S R White, Phys. Rev. Lett. 69(19), 2863 (1992)CrossRefADSGoogle Scholar
  6. [6]
    S R White, Phys. Rev. B48, 10345 (1993)Google Scholar
  7. [7]
    P Schmitteckert, R A Jalabert, D Weinmann and J-L Pichard, Phys. Rev. Lett. 81(11), 2308 (1998)CrossRefADSGoogle Scholar
  8. [8]
    P Schmitteckert, T Schulze, C Schuster, P Schwab and U Eckern, Phys. Rev. Lett. 80, 560 (1998)CrossRefADSGoogle Scholar
  9. [9]
    J M Carter, Disorder and interactions in 1D systems, PhD thesis (University of London, 2003)Google Scholar
  10. [10]
    J M Carter and A MacKinnon, Phys. Rev. B72, 024208 (2005)Google Scholar
  11. [11]
    A MacKinnon and B Kramer, Phys. Rev. Lett. 47, 1546 (1981)CrossRefADSGoogle Scholar
  12. [12]
    A MacKinnon and B Kramer, Z. Phys. B51, 1 (1983)CrossRefADSGoogle Scholar
  13. [13]
    A L Efros and B I Shkloviskii, J. Phys. C8, L49 (1975)ADSGoogle Scholar
  14. [14]
    P W Anderson, Phys. Rev. 109(5), 1492 (1958)CrossRefADSGoogle Scholar
  15. [15]
    P Schmitteckert, T Schulze, C Schuster, P Schwab and U Eckern, Phys. Rev. Lett. 80(3), 560 (1998)CrossRefADSGoogle Scholar
  16. [16]
    B Kramer and A MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)CrossRefADSGoogle Scholar
  17. [17]
    H Pang, S Liang and J F Annett, Phys. Rev. Lett. 71(26), 4377 (1993)CrossRefADSGoogle Scholar
  18. [18]
    C N Yang and C P Yang, Phys. Rev. 150, 321 (1966)CrossRefADSGoogle Scholar
  19. [19]
    C N Yang and C P Yang, Phys. Rev. 150, 327 (1966)CrossRefADSGoogle Scholar
  20. [20]
    C N Yang and C P Yang, Phys. Rev. 151, 258 (1966)CrossRefADSGoogle Scholar
  21. [21]
    G Bouzerar and D Poilblanc, J. Phys. I France 4, 1699 (1994)CrossRefGoogle Scholar
  22. [22]
    P Schmitteckert and U Eckern, Phys. Rev. B53(23), 15397 (1996)Google Scholar
  23. [23]
    D Weinmann, P Schmitteckert, R A Jalabert and J-L Pichard, Eur. Phys. J. B19, 139 (2001)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Blackett LaboratoryImperial College LondonLondonUK

Personalised recommendations