Advertisement

Pramana

, Volume 70, Issue 4, pp 565–574 | Cite as

Perfect fluid bianchi Type-I cosmological models with time varying G and Λ

  • J. P. Singh
  • R. K. Tiwari
Article

Abstract

Bianchi Type-I cosmological models containing perfect fluid with time varying G and Λ have been presented. The solutions obtained represent an expansion scalar θ bearing a constant ratio to the anisotropy in the direction of space-like unit vector λ i . Of the two models obtained, one has negative vacuum energy density, which decays numerically. In this model, we obtain Λ ∼ H 2, Λ ∼ R 44/R and Λ ∼ T −2 (T is the cosmic time) which is in accordance with the main dynamical laws for the decay of Λ. The second model reduces to a static solution with repulsive gravity.

Keywords

Bianchi Type-I Universe varying G and Λ cosmology 

PACS No.

98.80.Cq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A G Riess et al, Astron. J. 116, 1099 (1998)CrossRefGoogle Scholar
  2. [2]
    S Perlmutter et al, Astrophys. J. 517, 565 (1999)CrossRefADSGoogle Scholar
  3. [3]
    S Perlmutter et al, Nature (London) 391, 51 (1998)CrossRefADSGoogle Scholar
  4. [4]
    J P Ostriker and P J Steinhardt, Nature (London) 377, 600 (1995)CrossRefADSGoogle Scholar
  5. [5]
    S Weinberg, Rev. Mod. Phys. 61, 1 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [6]
    S Weinberg, astro-ph/0005265Google Scholar
  7. [7]
    M Gasperini, Class Quantum Gravit. 5, 521 (1988)CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    M Ozer and M O Taha, Nucl. Phys. B287, 776 (1987)CrossRefADSGoogle Scholar
  9. [9]
    K Freese et al, Nucl. Phys. B287, 797 (1987)CrossRefADSGoogle Scholar
  10. [10]
    J A Frieman et al, Phys. Rev. Lett. 75, 2077 (1995)CrossRefADSGoogle Scholar
  11. [11]
    K Coble, S Dodelson and J A Frieman, Phys. Rev. D55, 1851 (1997)ADSGoogle Scholar
  12. [12]
    P A M Dirac, Proc. R. Soc. London A165, 199 (1938)ADSGoogle Scholar
  13. [13]
    A-M M Abdel-Rahman, Nuovo Cimento B102, 225 (1988)ADSGoogle Scholar
  14. [14]
    A-M M Abdel-Rahman, Phys. Rev. D45, 3497 (1992)ADSGoogle Scholar
  15. [15]
    J D Barrow, Phys. Lett. B180, 335 (1986)ADSMathSciNetGoogle Scholar
  16. [16]
    J D Barrow and P Parsons, Phys. Rev. D55, 1906 (1997)ADSGoogle Scholar
  17. [17]
    A Beesham, Gen. Relativ. Gravit. 26, 159 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. [18]
    M S Berman, Phys. Rev. D43, 1075 (1991)ADSGoogle Scholar
  19. [19]
    J C Carvalho, J A S Lima and I Waga, Phys. Rev. D46, 2404 (1992)ADSGoogle Scholar
  20. [20]
    W Chen and Y S Wu, Phys. Rev. D41, 695 (1990)ADSGoogle Scholar
  21. [21]
    D Kalligas, P S Wesson and C W F Everitt, Gen. Relativ. Gravit. 24, 351 (1992)CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    D Kalligas, P S Wesson and C W F Everitt, Gen. Relativ. Gravit. 27, 645 (1995)zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. [23]
    Y K Lau, Aust. J. Phys. 38, 547 (1985)ADSGoogle Scholar
  24. [24]
    Y K Lau and S J Prokhovnik, Aust. J. Phys. 39, 339 (1986)ADSGoogle Scholar
  25. [25]
    J A S Lima and M Trodden, Phys. Rev. D53, 4280 (1996)ADSGoogle Scholar
  26. [26]
    J A S Lima and J M F Maia, Phys. Rev. D49, 5597 (1994)ADSGoogle Scholar
  27. [27]
    Bijan Saha, Int. J. Theor. Phys. 45, 983 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Bijan Saha, Astrophys. Space Sci. 302, 83 (2006)zbMATHCrossRefADSGoogle Scholar
  29. [29]
    A Pradhan and P Pandey, Astrophys. Space Sci. 301, 221 (2006)CrossRefGoogle Scholar
  30. [30]
    A Pradhan and S K Singh, Int. J. Mod. Phys. D13, 503 (2004)ADSMathSciNetGoogle Scholar
  31. [31]
    O Bertolami, Nuovo Cimento B93, 36 (1986)ADSGoogle Scholar
  32. [32]
    C W Misner, Ap. J. 151, 431 (1968)CrossRefADSGoogle Scholar
  33. [33]
    W Huang, J. Math. Phys. 31, 1456 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  34. [34]
    L P Chimento et al, Class. Quantum Gravit. 14, 3363 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. [35]
    S R Roy, S Narain and J P Singh, Aust. J. Phys. 38, 239 (1985)ADSMathSciNetGoogle Scholar
  36. [36]
    R G Vishwakarma, Gen. Relativ. Gravit. 37, 1305 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. [37]
    L M Salim and I Waga, Class. Quantum Gravit. 10, 1767 (1993)CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    A I Arbab and A-M M Abdel-Rahman, Phys. Rev. D50, 7725 (1994)ADSGoogle Scholar
  39. [39]
    C Wetterich, Astron. Astrophys. 301, 321 (1995)ADSGoogle Scholar
  40. [40]
    A I Arbab, Gen. Relativ. Gravit. 29, 61 (1994)CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    R G Vishwakarma, Class. Quantum Gravit. 18, 1159 (2001)zbMATHCrossRefADSGoogle Scholar
  42. [42]
    M S Berman and M M Som, Int. J. Theor. Phys. 29, 1411 (1990)CrossRefMathSciNetGoogle Scholar
  43. [43]
    A I Arbab, Class. Quantum Gravit. 20, 93 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. [44]
    M S Berman, Int. J. Theor. Phys. 29, 571 (1990)zbMATHCrossRefGoogle Scholar
  45. [45]
    B M S Hansen et al, Astrophys. J. 574, L155 (2002)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Department of Mathematical SciencesA.P.S. UniversityRewaIndia
  2. 2.Department of MathematicsGovt. Model Science CollegeRewaIndia

Personalised recommendations