Advertisement

Pramana

, Volume 69, Issue 1, pp 49–76 | Cite as

The Raychaudhuri equations: A brief review

  • Sayan Kar
  • Soumitra Sengupta
Article

Abstract

We present a brief review on the Raychaudhuri equations. Beginning with a summary of the essential features of the original article by Raychaudhuri and subsequent work of numerous authors, we move on to a discussion of the equations in the context of alternate non-Riemannian spacetimes as well as other theories of gravity, with a special mention on the equations in spacetimes with torsion (Einstein-Cartan-Sciama-Kibble theory). Finally, we give an overview of some recent applications of these equations in general relativity, quantum field theory, string theory and the theory of relativisitic membranes. We conclude with a summary and provide our own perspectives on directions of future research.

Keywords

Raychaudhuri equations general relativity alternate theories of gravity 

PACS Nos

04.20.-q 04.50.+h 11.25-w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A Raychaudhuri, Phys. Rev. 89, 417 (1953)zbMATHADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    A Raychaudhuri, Phys. Rev. 86, 90 (1952)zbMATHADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    A Raychaudhuri, Phys. Rev. 98, 1123 (1955)zbMATHADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    A Raychaudhuri, Z. Astrophysik 43, 161 (1957)ADSGoogle Scholar
  5. [5]
    O Heckmann and E Schucking, Z. Astrophysik 38, 95 (1955)ADSMathSciNetGoogle Scholar
  6. [6]
    A Komar, Phys. Rev. 104, 544 (1956)zbMATHADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    A Raychaudhuri, Phys. Rev. 106, 172 (1957)ADSCrossRefGoogle Scholar
  8. [8]
    J Ehlers, Gen. Relativ. Gravit. 25, 1225 (1993); English translation of original German article by P Jordan, J Ehlers, W Kundt and R K Sachs, Proceedings of the Mathematical-Natural Sciences Section of the Mainz Academy of Sciences and Literature, Nr. 11, 792 (1961)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. [9]
    R K Sachs, Proc. R. Soc. (London) A264, 309 (1961); ibid A270, 103 (1962)ADSMathSciNetGoogle Scholar
  10. [10]
    L Landau and E M Lifshitz, Classical theory of fields (Pergamon Press, Oxford, UK, 1975)Google Scholar
  11. [11]
    E M Lifshitz and I M Khalatnikov, Adv. Phys. 12, 185 (1963)ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    R Penrose, Phys. Rev. Lett. 14, 57 (1965)zbMATHADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    S W Hawking, Phys. Rev. Lett. 15, 689 (1965)ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    S W Hawking, Phys. Rev. Lett. 17, 444 (1966)ADSCrossRefGoogle Scholar
  15. [15]
    R M Wald, General relativity (University of Chicago Press, Chicago, USA, 1984)zbMATHGoogle Scholar
  16. [16]
    S W Hawking and G F R Ellis, The large scale structure of spacetime (Cambridge University Press, Cambridge, UK, 1973)Google Scholar
  17. [17]
    P S Joshi, Global aspects in gravitation and cosmology (Oxford University Press, Oxford, UK, 1997)Google Scholar
  18. [18]
    E Poisson, A relativist’s toolkit: the mathematics of black hole mechanics (Cambridge University Press, Cambridge, UK, 2004)zbMATHGoogle Scholar
  19. [19]
    G F R Ellis, in General relativity and cosmology, International School of Physics, Enrico Fermi-Course XLVII (Academic Press, New York, 1971)Google Scholar
  20. [20]
    I Ciufolini and J A Wheeler, Gravitation and inertia (Princeton University Press, Princeton, USA, 1995)zbMATHGoogle Scholar
  21. [21]
    M Visser, Lorentzian wormholes from Einstein to Hawking (AIP Press, USA, 1995)Google Scholar
  22. [22]
    T Frankel, Gravitational curvature (W H Freeman, USA, 1979)zbMATHGoogle Scholar
  23. [23]
    E Zafiris, J. Geom. Phys. 28, 271 (1998)zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. [24]
    B Carter, Contemp. Math. 203, 207 (1997)Google Scholar
  25. [25]
    F J Tipler, Phys. Rev. D17, 2521 (1978)ADSMathSciNetGoogle Scholar
  26. [26]
    F J Tipler, J. Diff. Equ. 30, 165 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    J D Bekenstein, Phys. Rev. D11, 2072 (1975)ADSMathSciNetGoogle Scholar
  28. [28]
    G L Murphy, Phys. Rev. D8, 4231 (1973)ADSGoogle Scholar
  29. [29]
    H Epstein, V Glaser and A Jaffe, Nuovo Cimento 36, 1016 (1965)CrossRefMathSciNetGoogle Scholar
  30. [30]
    R R Caldwell, M Kamionkowski and N N Weinberg, Phys. Rev. Lett. 91, 071301 (2003)Google Scholar
  31. [30a]
    S M Carroll, M Hoffman and M Trodden, Phys. Rev. D68, 023509 (2003)Google Scholar
  32. [30b]
    P Frampton, Phys. Lett. B555, 139 (2003)ADSGoogle Scholar
  33. [30c]
    V Sahni and Y Shtanov, J. Cosmol. Astropart. Phys. 0311, 014 (2003)ADSCrossRefMathSciNetGoogle Scholar
  34. [31]
    L Randall and R Sundrum, Phys. Rev. Lett. 83, 4690 (1999)zbMATHADSCrossRefMathSciNetGoogle Scholar
  35. [31a]
    C Csaki, TASI Lectures on Extra Dimensions and Branes, hep-ph/0404096Google Scholar
  36. [32]
    N D Birrell and P C W Davies, Quantum fields in curved space (Cambridge University Press, Cambridge, UK, 1982)zbMATHGoogle Scholar
  37. [33]
    H B G Casimir, On the attraction between two perfectly conducting plates, Proc. Kon. Nederl. Akad. Wetenschap 51, 793 (1948)zbMATHGoogle Scholar
  38. [34]
    A Borde, Class. Quant. Grav. 4, 343 (1987)zbMATHADSCrossRefMathSciNetGoogle Scholar
  39. [35]
    T Roman, Phys. Rev. D37, 546 (1988)ADSMathSciNetGoogle Scholar
  40. [36]
    F J Tipler, Ann. Phys. 108, 1 (1977); ibid. Phys. Rev. Lett. 37, 879 (1976)zbMATHADSCrossRefMathSciNetGoogle Scholar
  41. [37]
    C Chicone and P Ehrlich, Manuscripta Math. 31, 297 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  42. [38]
    T Roman and P G Bergmann, Phys. Rev. D28, 1265 (1983)ADSMathSciNetGoogle Scholar
  43. [39]
    T Roman, Phys. Rev. D33, 3526 (1986)ADSMathSciNetGoogle Scholar
  44. [40]
    M Visser, Phys. Rev. D47, 2395 (1993)ADSMathSciNetGoogle Scholar
  45. [41]
    A K Raychaudhuri, Phys. Rev. Lett. 80, 654 (1998)zbMATHADSCrossRefMathSciNetGoogle Scholar
  46. [41a]
    A Saa, Phys. Rev. Lett. 81, 5031 (1998)zbMATHADSCrossRefMathSciNetGoogle Scholar
  47. [41b]
    J M M Senovilla, Phys. Rev. Lett. 81, 5032 (1998)zbMATHADSCrossRefMathSciNetGoogle Scholar
  48. [41c]
    A K Raychaudhuri, Phys. Rev. Lett. 81, 5033 (1998)zbMATHADSCrossRefMathSciNetGoogle Scholar
  49. [42]
    A K Raychaudhuri, Mod. Phys. Lett. A15, 391 (2000)ADSMathSciNetGoogle Scholar
  50. [43]
    J M M Senovilla, Phys. Rev. Lett. 64, 2219 (1990)zbMATHADSCrossRefMathSciNetGoogle Scholar
  51. [43a]
    E Ruiz and J M M Senovilla, Phys. Rev. D45, 1995 (1992)ADSMathSciNetGoogle Scholar
  52. [44]
    J M M Senovilla, Pramana — J. Phys. 69(1), 31 (2007)CrossRefADSGoogle Scholar
  53. [45]
    A K Raychaudhuri and S Banerji, Zeit. fur. Astrophysik 58, 187 (1964)zbMATHADSMathSciNetGoogle Scholar
  54. [46]
    S Banerji, Phys. Rev. D9, 877 (1974)ADSMathSciNetGoogle Scholar
  55. [47]
    A K Raychaudhuri, Prog. Theor. Phys. 53, 1360 (1975)ADSCrossRefGoogle Scholar
  56. [48]
    J H Kung, Phys. Rev. D52, 6922 (1995)ADSGoogle Scholar
  57. [49]
    V Muller and H J Schmidt, Gen. Relativ. Gravit. 17, 769 (1985)ADSCrossRefMathSciNetGoogle Scholar
  58. [49a]
    D Page, Phys. Rev. D36, 1607 (1987)ADSMathSciNetGoogle Scholar
  59. [49b]
    J D Barrow and A Ottewill, J. Phys. A16, 2757 (1983)ADSMathSciNetGoogle Scholar
  60. [50]
    J H Kung, Phys. Rev. D53, 3017 (1996)ADSGoogle Scholar
  61. [51]
    B Whitt, Phys. Lett. B145, 176 (1984)ADSMathSciNetGoogle Scholar
  62. [51a]
    J C Alonso, F Barbero, J Julve and A Tiemblo, Class. Quant. Grav. 11, 865 (1994)zbMATHADSCrossRefMathSciNetGoogle Scholar
  63. [51b]
    M Mijic et al, Phys. Rev. D34, 2934 (1986)ADSGoogle Scholar
  64. [52]
    J A Schouten, Ricci calculus (Springer-Verlag, Berlin, 1954)zbMATHGoogle Scholar
  65. [53]
    F W Hehl, P von der Heyde, G D Kerlick and J M Nester, Rev. Mod. Phys. 48, 393 (1976)ADSCrossRefGoogle Scholar
  66. [54]
    M B Green, J H Schwarz and E Witten, Superstring theory (Cambridge University Press, Cambridge, UK, 1987)zbMATHGoogle Scholar
  67. [54a]
    R Hammond, Il Nuovo Cimento B109, 319 (1994); Gen. Relativ. Gravit. 28, 419 (1986)ADSGoogle Scholar
  68. [54b]
    V De Sabbata, Ann. der Physik 7, 419 (1991)CrossRefGoogle Scholar
  69. [54c]
    V de Sabbata, Torsion, string tension and quantum gravity, in ’Erice 1992’ Proceedings, String Quantum Gravity and Physics at the Planck Energy Scale, p. 528Google Scholar
  70. [54d]
    Y Murase, Prog. Theor. Phys. 89, 1331 (1993)ADSCrossRefGoogle Scholar
  71. [55]
    P S Howe, A Opfermann and G Papadopoulos, Twistor spaces for QKT manifold, hep-th/9710072Google Scholar
  72. [55a]
    P S Howe and G Papadopoulos, Phys. Lett. B379, 80 (1996)ADSMathSciNetGoogle Scholar
  73. [55b]
    V de Sabbata and C Sivaram, Il Nuovo Cimento A109, 377 (1996)ADSGoogle Scholar
  74. [56]
    G Papadopoulos and P K Townsend, Nucl. Phys. B444, 245 (1995)ADSCrossRefMathSciNetGoogle Scholar
  75. [56a]
    C M Hull, G Papadopoulos and P K Townsend, Phys. Lett. B316, 291 (1993)ADSMathSciNetGoogle Scholar
  76. [56b]
    B D B Figueiredo, I Damiao Soares and J Tiomno, Class. Quant. Grav. 9, 1593 (1992)ADSCrossRefMathSciNetGoogle Scholar
  77. [56c]
    L C Garcia de Andrade, Mod. Phys. Lett. A12, 2005 (1997)ADSMathSciNetGoogle Scholar
  78. [56d]
    O Chandia, Phys. Rev. D55, 7580 (1997)ADSMathSciNetGoogle Scholar
  79. [56e]
    P S Letelier, Class. Quant. Grav. 12, 471 (1995); 12, 2221 (1995)zbMATHADSCrossRefMathSciNetGoogle Scholar
  80. [56f]
    R W Kühne, Mod. Phys. Lett. A12, 2473 (1997)ADSGoogle Scholar
  81. [56g]
    D K Ross, Int. J. Theor. Phys. 28, 1333 (1989)zbMATHCrossRefGoogle Scholar
  82. [57]
    S Kar, S SenGupta and S Sur, Phys. Rev. D67, 044005 (2003)Google Scholar
  83. [57a]
    S Kar, P Majumdar, S SenGupta and S Sur, Class. Quant. Grav. 19, 677 (2002)zbMATHADSCrossRefMathSciNetGoogle Scholar
  84. [57b]
    S SenGupta and S Sur, Phys. Lett. B521, 350 (2001)ADSMathSciNetGoogle Scholar
  85. [57c]
    S Kar, P Majumdar, S SenGupta and A Sinha, Eur. Phys. J. C23, 357 (2002)ADSGoogle Scholar
  86. [57d]
    P Majumdar and S SenGupta, Class. Quant. Grav. 16, L89 (1999)zbMATHADSCrossRefMathSciNetGoogle Scholar
  87. [57e]
    S SenGupta and S Sur, Europhys. Lett. 65, 601 (2004)ADSCrossRefGoogle Scholar
  88. [58]
    S Capozziello, G Lambiase and C Stornaiolo, Ann. der Phys. 10, 713 (2001), gr-qc/0101038zbMATHADSCrossRefMathSciNetGoogle Scholar
  89. [59]
    R de Ritis, M Lavorgna and C Stornaiolo, Phys. Lett. A95, 425 (1983)ADSGoogle Scholar
  90. [60]
    A Trautman, Nature (Phys. Sci.) 242, 7 (1973)ADSGoogle Scholar
  91. [61]
    J Stewart and P Hajicek, Nature (Phys. Sci.) 244, 96 (1973)ADSGoogle Scholar
  92. [62]
    G Esposito, Fortschritte der Physik 40 1 (1992)ADSCrossRefMathSciNetGoogle Scholar
  93. [63]
    M Demianski, R de Ritis, G Platania, P Scudellaro and C Stornaiolo, Phys. Rev. D35, 1181 (1987)ADSGoogle Scholar
  94. [64]
    G F R Ellis and M Bruni, Phys. Rev. D40, 1804 (1989)ADSMathSciNetGoogle Scholar
  95. [64a]
    G F R Ellis, J Hwang and M Bruni, Phys. Rev. D40, 1819 (1989)ADSMathSciNetGoogle Scholar
  96. [64b]
    G F R Ellis, M Bruni and J Hwang, Phys. Rev. D42, 1035 (1990)ADSMathSciNetGoogle Scholar
  97. [65]
    D Palle, Nuovo Cimento B114, 853 (1999)ADSGoogle Scholar
  98. [66]
    J Tafel, Phys. Lett. A45, 341 (1973)ADSGoogle Scholar
  99. [67]
    A K Raychaudhuri, Theoretical cosmology (Clarendon Press, Oxford, UK, 1979)zbMATHGoogle Scholar
  100. [68]
    N Sugiura, K Nakao, D Ida, N Sakai and H Ishihara, Prog. Theor. Phys. 103, 73 (2000)ADSCrossRefGoogle Scholar
  101. [69]
    L Herrera, Phys. Lett. A165, 206 (1992)ADSMathSciNetGoogle Scholar
  102. [70]
    A di Prisco, E Fuenmayor, L Herrera and V Varela, Phys. Lett. A195, 23 (1994)ADSGoogle Scholar
  103. [71]
    T Jacobson, Phys. Rev. Lett. 75, 1260 (1995)zbMATHADSCrossRefMathSciNetGoogle Scholar
  104. [72]
    C Elong, R Guedens and T Jacobson, Phys. Rev. Lett. 96, 121301 (2006)Google Scholar
  105. [73]
    D Lyth and M Mukherjee, Phys. Rev. D38, 485 (1988)ADSGoogle Scholar
  106. [74]
    N Ahmadi and M Nouri-Zonoz, Quantum gravitational optics: Effective Raychaudhuri equation, gr-qc/0605009Google Scholar
  107. [75]
    C Tsagas, Magnetic tension and gravitational collapse, gr-qc/0311085Google Scholar
  108. [76]
    R Maartens, Phys. Rev. D62, 084023 (2000)Google Scholar
  109. [77]
    R Capovilla and J Guven, Phys. Rev. D52, 1072 (1995)ADSMathSciNetGoogle Scholar
  110. [77a]
    S Kar, Phys. Rev. D52, 2036 (1995)ADSGoogle Scholar
  111. [77b]
    S Kar, Phys. Rev. D53, 2071 (1996)ADSMathSciNetGoogle Scholar
  112. [78]
    S Kar, Phys. Rev. D55, 7921 (1997)ADSMathSciNetGoogle Scholar
  113. [79]
    S Kar, Focusing of branes in warped backgrounds, Ind. J. Phys. (to appear in the special issue commemorating A K Raychaudhuri) (2006)Google Scholar
  114. [80]
    S Kar, Phys. Rev. D54, 6408 (1996)ADSMathSciNetGoogle Scholar
  115. [81]
    S Kar, Generalised Raychaudhuri equations for strings and membranes, Proceedings of IAGRG-XVIII (Matscience, Madras, India, Feb. 15–17, 1996) Matscience Report no. 117Google Scholar
  116. [82]
    J Borgman and L H Ford, Phys. Rev. D70, 064032 (2004)Google Scholar
  117. [83]
    J Borgman, Fluctuations of the expansion: The Langevin-Raychaudhuri equation, Ph.D. Thesis, Tufts University, USA (2004)Google Scholar
  118. [84]
    S Kar, Phys. Rev. D64, 105017 (2001)Google Scholar
  119. [85]
    V Balasubramanian, E Gimon and D Minic, J. High Energy Phys. 05, 014 (2000)ADSCrossRefMathSciNetGoogle Scholar
  120. [86]
    V Sahakian, Phys. Rev. D62, 126011 (2000)Google Scholar
  121. [87]
    E Alvarez and C Gomez, Nucl. Phys. B541, 441 (1999); ibid. Holography and the c-theorem, hep-th/0009203ADSCrossRefMathSciNetGoogle Scholar
  122. [88]
    M Cvetic and A A Tseytlin, Phys. Rev. D53, 5619 (1996)ADSMathSciNetGoogle Scholar
  123. [88a]
    A Stromonger, Phys. Lett. B383 (1996)Google Scholar
  124. [88b]
    S Ferrara and R Kallosh, Phys. Rev. D54, 1525 (1996)ADSMathSciNetGoogle Scholar
  125. [88c]
    S Ferrara, G W Gibbons and R Kallosh, Nucl. Phys. B500, 75 (1997)ADSCrossRefMathSciNetGoogle Scholar
  126. [89]
    K Goldstein, R P Jena, G Mandal and S P Trivedi, J. High Energy Phys. 02, 053 (2006)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2007

Authors and Affiliations

  • Sayan Kar
    • 1
  • Soumitra Sengupta
    • 2
  1. 1.Department of Physics and Centre for Theoretical StudiesIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Theoretical PhysicsIndian Association for the Cultivation of ScienceJadavpur, KolkataIndia

Personalised recommendations