Pramana

, Volume 68, Issue 5, pp 735–748 | Cite as

On the relative energy associated with space-times of diagonal metrics

  • Murat Korunur
  • Mustafa Salti
  • Ali Havare
Article
  • 27 Downloads

Abstract

In order to evaluate the energy distribution (due to matter and fields including gravitation) associated with a space-time model of generalized diagonal metric, we consider the Einstein, Bergmann-Thomson and Landau-Lifshitz energy and/or momentum definitions both in Einstein’s theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation). We find same energy distribution using Einstein and Bergmann-Thomson formulations, but we also find that the energy-momentum prescription of Landau-Lifshitz disagree in general with these definitions. We also give eight different well-known space-time models as examples, and considering these models and using our results, we calculate the energy distributions associated with them. Furthermore, we show that for the Bianchi Type-I models all the formulations give the same result. This result agrees with the previous works of Cooperstock-Israelit, Rosen, Johri et al, Banerjee-Sen, Xulu, Vargas and Saltı et al and supports the viewpoints of Albrow and Tryon.

Keywords

Energy diagonal space-times teleparallel theory 

PACS Nos

04.40.-q 04.20.Jb 04.50.+h 04.70.-s 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R C Tolman, Relativity, thermodynamics and cosmology (Oxford University Press, London, 1934) p. 227Google Scholar
  2. [2]
    A Papapetrou, Proc. R. Irish. Acad. A52, 11 (1948)MathSciNetGoogle Scholar
  3. [3]
    P G Bergmann and R Thomson, Phys. Rev. 89, 400 (1953)MATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    C Møller, Ann. Phys. (NY) 4, 347 (1958)MATHCrossRefADSGoogle Scholar
  5. [5]
    C Møller, Ann. Phys. (NY) 12, 118 (1961)MATHCrossRefADSGoogle Scholar
  6. [6]
    S Weinberg, Gravitation and cosmology: Principle and applications of general theory of relativity (John Wiley and Sons, Inc., New York, 1972)Google Scholar
  7. [7]
    A Qadir and M Sharif, Phys. Lett. A167, 331 (1992)MathSciNetADSGoogle Scholar
  8. [8]
    L D Landau and E M Lifshitz, The classical theory of fields, 4th edition (Pergamon Press, Oxford, 1987) (Reprinted in 2002)Google Scholar
  9. [9]
    F I Mikhail, M I Wanas, A Hindawi and E I Lashin, Int. J. Theor. Phys. 32, 1627 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    T Vargas, Gen. Relativ. Gravit. 36, 1255 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  11. [11]
    I Radinschi, Mod. Phys. Lett. A15, 2171 (2000)MathSciNetADSGoogle Scholar
  12. [12]
    I Radinschi, Fizika B9, 43 (2000); Chin. J. Phys. 42, 40 (2004); Fizika B14, 3 (2005); Mod. Phys. Lett. A17, 1159 (2002); U.V.T., Physics Series 42, 11 (2001); Mod. Phys. Lett. A16, 673 (2001); Acta Phys. Slov. 49, 789 (1999); Acta Phys. Slov. 50, 609 (2000); Mod. Phys. Lett. A15, 803 (2000)ADSGoogle Scholar
  13. [12a]
    Th Grammenos and I Radinschi, gr-qc/0602105Google Scholar
  14. [12b]
    I-Ching Yang and Irina Radinschi, Chin. J. Phys. 41, 326 (2003)MathSciNetGoogle Scholar
  15. [13]
    K S Virbhadra, Phys. Rev. D41, 1086 (1990)MathSciNetADSGoogle Scholar
  16. [14]
    K S Virbhadra, Phys. Rev. D42, 2919 (1990)MathSciNetADSGoogle Scholar
  17. [15]
    K S Virbhadra, Phys. Rev. D60, 104041 (1999)Google Scholar
  18. [16]
    F I Cooperstock and S A Richardson, in Proc. 4th Canadian Conf. on General Relativity and Relativistic Astrophysics (World Scientific, Singapore, 1991)Google Scholar
  19. [17]
    N Rosen and K S Virbhadra, Gen. Relativ. Gravit. 25, 429 (1993)MATHCrossRefMathSciNetGoogle Scholar
  20. [18]
    K S Virbhadra, Pramana — J. Phys. 45, 215 (1995)ADSGoogle Scholar
  21. [19]
    A Chamorro and K S Virbhadra, Pramana — J. Phys. 45, 181 (1995)ADSGoogle Scholar
  22. [20]
    J M Aguirregabiria, A Chamorro and K S Virbhadra, Gen. Relativ. Gravit. 28, 1393 (1996)MATHCrossRefMathSciNetADSGoogle Scholar
  23. [21]
    A Chamorro and K S Virbhadra, Int. J. Mod. Phys. D5, 251 (1996)MathSciNetADSGoogle Scholar
  24. [22]
    S S Xulu, Int. J. Mod. Phys. A15, 4849 (2000)MathSciNetADSGoogle Scholar
  25. [23]
    E C Vagenas, Int. J. Mod. Phys. A18, 5781 (2003); Int. J. Mod. Phys. A18, 5949 (2003); Mod. Phys. Lett. A19, 213 (2004); Int. J. Mod. Phys. D14, 573 (2005); Int. J. Mod. Phys. A21, 1947 (2006)MathSciNetADSGoogle Scholar
  26. [24]
    H V Fagundes, Gen. Relativ. Gravit. 24(2), (1992)Google Scholar
  27. [24a]
    M Saltı and A Havare, Int. J. Mod. Phys. A20, 2169 (2005)ADSGoogle Scholar
  28. [24b]
    M Saltı, Astrophys. Space Sci. 299, 159 (2005); Mod. Phys. Lett. A20, 2175 (2005); Acta Phys. Slov. 55, 563 (2005); Czech. J. Phys. 56, 177 (2006)CrossRefADSGoogle Scholar
  29. [25]
    M Saltı and O Aydogdu, Found. Phys. Lett. 19, 269 (2006)CrossRefMathSciNetGoogle Scholar
  30. [26]
    O Aydogdu and M Saltı, Prog. Theor. Phys. 115, 63 (2006)MATHCrossRefADSGoogle Scholar
  31. [27]
    O Aydogdu, M Saltı and M Korunur, Acta Phys. Slov. 55, 537 (2005)Google Scholar
  32. [27a]
    A Havare, M Korunur and M Saltı, Astrophys. Space Sci. 301, 43 (2006)CrossRefADSGoogle Scholar
  33. [28]
    J A Plebanski and M Demianski, Ann. Phys. (NY) 98, 98 (1976)MATHCrossRefMathSciNetADSGoogle Scholar
  34. [29]
    O J C Dias and J P S Lemos, Phys. Rev. D67, 064001 (2003)Google Scholar
  35. [30]
    C Wu, Gen. Relativ. Gravit. 3, 625 (1969)Google Scholar
  36. [31]
    A H Guth, Phys. Rev. D23, 347 (1981)ADSGoogle Scholar
  37. [31a]
    A D Linde, Phys. Lett. B108, 389 (1982)MathSciNetADSGoogle Scholar
  38. [31b]
    A D Linde, Phys. Lett. B129, 177 (1983)MathSciNetADSGoogle Scholar
  39. [31c]
    A Albrecht and P J Steinhardt, Phys. Rev. D48, 1220 (1982)ADSGoogle Scholar
  40. [32]
    J D Barrow, Phys. Rev. D55, 7451 (1997)ADSGoogle Scholar
  41. [33]
    O Heckmann and E Schucking, Newtonsche and Einsteinsche Kosmologie, Handbuch der Physik 53, 489 (1959)ADSGoogle Scholar
  42. [34]
    R Weitzenböck, Invariantten theorie (Gronningen, Noordhoff, 1923)Google Scholar
  43. [35]
    K Hayashi and T Shirafuji, Phys. Rev. D19, 3524 (1978)MathSciNetADSGoogle Scholar
  44. [36]
    V V de Andrade and J G Pereira, Phys. Rev. D56, 4689 (1997)ADSGoogle Scholar
  45. [37]
    C Møller, Mat. Fys. Medd. K. Vidensk. Selsk. 39, 13 (1978); 1, 10 (1961)Google Scholar
  46. [38]
    D Saez, Phys. Rev. D27, 2839 (1983)MathSciNetADSGoogle Scholar
  47. [39]
    H Meyer, Gen. Relativ. Gravit. 14, 531 (1982)CrossRefGoogle Scholar
  48. [40]
    K Hayashi and T Shirafuji, Prog. Theoret. Phys. 64, 866 (1980); 65, 525 (1980)MATHMathSciNetADSGoogle Scholar
  49. [41]
    F W Hehl, J Nitsch and P von der Heyde, General relativity and gravitation edited by A Held (Plenum, New York, 1980)Google Scholar
  50. [42]
    M G Albrow, Nature (London) 241, 56 (1973)ADSGoogle Scholar
  51. [43]
    E P Tryon, Nature (London) 246, 396 (1973)CrossRefADSGoogle Scholar
  52. [44]
    F I Cooperstock, Gen. Relativ. Gravit. 26, 323 (1994)CrossRefGoogle Scholar
  53. [44a]
    F I Cooperstock and M Israelit, Found. Phys. 25, 631 (1995)CrossRefMathSciNetGoogle Scholar
  54. [45]
    N Rosen, Gen. Relativ. Gravit. 26, 319 (1994)CrossRefGoogle Scholar
  55. [45a]
    V B Johri, D Kalligas, G P Singh and C W F Everitt, Gen. Relativ. Gravit. 27, 323 (1995)CrossRefMathSciNetGoogle Scholar
  56. [45b]
    N Banerjee and S Sen, Pramana — J. Phys. 49, 609 (1997)ADSGoogle Scholar
  57. [45c]
    S S Xulu, Int. J. Theor. Phys. 30, 1153 (2000)CrossRefMathSciNetGoogle Scholar
  58. [45d]
    M Saltı, Nuovo Cimento B120, 53 (2005)ADSGoogle Scholar
  59. [46]
    G Gamow, Nature (London) 158, 549 (1946)Google Scholar
  60. [47]
    K Gödel, Rev. Mod. Phys. 21, 447 (1949)MATHCrossRefADSGoogle Scholar
  61. [48]
    O Gron and H H Soleng, Acta Phys. Pol. B20, 557 (1989)MathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2007

Authors and Affiliations

  • Murat Korunur
    • 1
  • Mustafa Salti
    • 2
  • Ali Havare
    • 3
  1. 1.Department of PhysicsDicle UniversityDiyarbakirTurkey
  2. 2.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey
  3. 3.Department of PhysicsMersin UniversityMersinTurkey

Personalised recommendations