, Volume 68, Issue 4, pp 631–648

Application of inertia-induced excitation theory for nonlinear acoustic modes in colloidal plasma equilibrium flow

  • P K Karmakar


Application of inertia-induced acoustic excitation theory offers a new resonant excitation source channel of acoustic turbulence in the transonic domain of plasma flow. In bi-ion plasmas like colloidal plasma, two well-defined transonic points exist corresponding to the parent ion and the dust grain-associated acoustic modes. As usual, the modified ion acoustic mode (also known as dust ion-acoustic (DIA) wave) dynamics associated with parent ion inertia is excitable for both nanoscale-and micronscale-sized dust grains. It is found that the so-called (ion) acoustic mode (also known as dust-acoustic (DA) wave) associated with nanoscale dust grain inertia is indeed resonantly excitable through the active role of weak but finite parent ion inertia. It is interestingly conjectured that the same excitation physics, as in the case of normal plasma sound mode, operates through the active inertial role of plasma thermal species. Details of the nonlinear acoustic mode analyses of current interest in transonic domains of such impure plasmas in hydrodynamic flow are presented.


Dust-acoustic (DA) wave dust ion-acoustic (DIA) wave constant dust charge model d-KdV equation colloidal plasma fluids dusty plasma complex plasma transonic plasma fluid acoustic modes acoustic turbulence acoustic fluctuations 


82.70.D 52.25.V 52.35 52.35.F 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C B Dwivedi and R Prakash, J. Appl. Phys. 90, 9200 (2001)CrossRefGoogle Scholar
  2. [2]
    P K Karmakar, U Deka and C B Dwivedi, Phys. Plasmas 12, 032105 (2005)Google Scholar
  3. [3]
    U Deka, A Sarma, R Prakash, P K Karmakar and C B Dwivedi, Phys. Scr. 69, 303 (2004)MATHADSCrossRefGoogle Scholar
  4. [4]
    P Mora, Phys. Rev. Lett. 90, 185002–1 (2003)ADSCrossRefGoogle Scholar
  5. [5]
    C B Dwivedi, Pramana — J. Phys. 55, 843 (2000)ADSGoogle Scholar
  6. [6]
    C B Dwivedi, Phys. Plasmas 6, 31 (1999)ADSCrossRefGoogle Scholar
  7. [7]
    M S Sodha and S Guha, Advances in plasma physics edited by A Simon and W B Thompson (Wiley, New York, 1971) vol. 4Google Scholar
  8. [8]
    C K Goertz, Rev. Geophys. 27, 271 (1989)ADSGoogle Scholar
  9. [9]
    F Verheest, Space Sci. Rev. 77, 267 (1996)ADSCrossRefGoogle Scholar
  10. [10]
    H Thomas, G E Morfill, V Demmel, J Goerce, B Feuerbacher and D Mohlmann, Phys. Rev. Lett. 73, 652 (1994)ADSCrossRefGoogle Scholar
  11. [11]
    G S Selwyn, J E Heidenreich and K L Haller, Appl. Phys. Lett. 57, 1876 (1990)ADSCrossRefGoogle Scholar
  12. [12]
    L Boufendi, A Bouchoule, P K Porteous, J Ph Blondeau, A Plain and C Laure, J. Appl. Phys. 73, 2160 (1993)ADSCrossRefGoogle Scholar
  13. [13]
    A Gondhalekar, P C Stangeby and J D Elder, Nucl. Fusion 34, 247 (1994)CrossRefGoogle Scholar
  14. [14]
    B N Kolbasov, A B Kukushkin, V A Rantsev Kartinov and P V Romanov, Phys. Lett. A269, 363 (2000)ADSGoogle Scholar
  15. [15]
    N N Rao, P K Shukla and M Y Yu, Planet Space Sci. 38, 345 (1990)CrossRefGoogle Scholar
  16. [16]
    P K Shukla, Waves in dusty, solar wind and space plasmas (AIP Conference Proceedings, Leuven, Belgium, 2000) vol. 537, p. 3Google Scholar
  17. [17]
    Edward Thomas Jr, Jeremiah D Williams and Jennifer Silver, Phys. Plasmas 11, L37 (2004)ADSCrossRefGoogle Scholar
  18. [18]
    C B Dwivedi, Phys. Plasmas 4, 3427 (1997)ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J D Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, DC 20375-5320), NRL/PU/6790-00-426, Chap. Beam Instabilities (2000) p. 49Google Scholar
  20. [20]
    R J Briggs, in: Advances in plasma physics edited by Simon and Thompson (Interscience Publishers, 1977), Chap. Two-stream instabilities, vol. 4, p. 43Google Scholar
  21. [21]
    V Y Bychenkov, V P Silin and S A Uryupin, Phys. Rep. 3, 119 (1988)ADSCrossRefGoogle Scholar
  22. [22]
    M Rosenberg, Planet. Space Sci. 41, 229 (1993)ADSCrossRefGoogle Scholar
  23. [23]
    N A Krawll and A W Trivelpiece, Principles of plasma physics (McGraw-Hill, New York, 1973), p. 389Google Scholar
  24. [24]
    N D’Angelo and R L Merlino, Planet. Space Sci. 44, 1593 (1996)ADSCrossRefGoogle Scholar
  25. [25]
    M Rosenberg and V W Chow, Planet. Space Sci. 46, 103 (1998)ADSCrossRefGoogle Scholar
  26. [26]
    P K Karmakar and C B Dwivedi, J. Math. Phys. 47, 032901 (1) (2006)Google Scholar
  27. [27]
    R L Merlino, IEEE Trans. Plasma Sci. 25, 60 (1997)CrossRefGoogle Scholar
  28. [28]
    R Merlino and N D’Angelo, Phys. Plasmas 12, 054504 (2005)Google Scholar

Copyright information

© Indian Academy of Sciences 2007

Authors and Affiliations

  • P K Karmakar
    • 1
  1. 1.Department of PhysicsTezpur UniversityNapaamIndia

Personalised recommendations