Advertisement

Tropical Plant Biology

, Volume 12, Issue 4, pp 282–292 | Cite as

The Effects of Habitat Loss on Genetic Diversity and Population Structure of Cedrela fissilis Vell.

  • Flávio Bertin Gandara
  • Paulo Roberto Da-Silva
  • Tânia Maria de Moura
  • Fernanda Bortolanza Pereira
  • Cláudia Regina Gobatto
  • Elza M. Ferraz
  • Paulo Y. Kageyama
  • Evandro Vagner TambarussiEmail author
Article
  • 511 Downloads

Abstract

Cedrela fissilis Vell. has a wide distribution in South and Central America, and in neotropical forests the species occurs at a low density. Its wood is one of the most valued around the world, and the species is currently at risk of extinction due to both habitat fragmentation and illegal logging. Considering the need for conservation strategies, this study aims to investigate the genetic structure, diversity, and inbreeding in C. fissilis populations from the Atlantic Forest. To do this, nine microsatellite loci were used to genotype 289 individuals from eight undisturbed and disturbed fragments. Two of the eight populations harbor most of the genetic diversity: one includes most of the diversity present in all populations and the other is isolated but with high levels of diversity. Genetic diversity was higher within than among populations, with observed and expected heterozygosities ranging from 0.48 to 0.63 and from 0.55 to 0.70, respectively. We detected a significant fixation index, ranging from 0.08 to 0.24 and 32% of the observed alleles were exclusive of some population. The populations showed moderate genetic structure (FST = 0.10) and the Bayesian analysis grouped the studied individuals into three distinct genetic clusters that seem to be related to the presence of geographical barriers. The overall analyses of the results allow us to conclude that protecting only isolated fragments, either large or small, may be ineffective for conserving the C. fissilis gene pool in the studied region. This observation suggests that an appropriate strategy to conserve the gene pool of the species is to maintain both the Atlantic Forest green belt in the eastern portion of the Central and South region of this biome, where the forest is not highly fragmented, as well as the remaining forest areas to the west of the Paraná River.

Keywords

Tree species Conservation Fragmentation Meliaceae 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12042_2019_9234_MOESM1_ESM.xls (68 kb)
ESM 1 (XLS 67 kb)

References

  1. Biernaski FA, Higa AR, Silva LD (2012) Variabilidade genética para caracteres juvenis de progênies de Cedrela fissilis Vell.: subsídio para definição de zonas de coleta e uso de sementes. Rev Árvore 36:49–58.  https://doi.org/10.1590/S0100-67622012000100006 CrossRefGoogle Scholar
  2. Browne L, Ottewell K, Karubian (2015) Short-term genetic consequences of habitat loss and fragmentation for the Neotropical palm Oenocarpus bataua. Heredity 115:389–395.  https://doi.org/10.1038/hdy.2015.35 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Carvalho PER (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA/Florestas, ColomboGoogle Scholar
  4. Cavers S, Navarro C, Lowe AJ (2003) Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela Odorata L., in Mesoamerica. Mol Ecol 12:1451–1460.  https://doi.org/10.1046/j.1365-294X.2003.01810.x CrossRefPubMedGoogle Scholar
  5. Cavers S, Navarro C, Lowe AJ (2004) Targeting genetic resource conservation in widespread species: a case study of Cedrela odorata L. Forest Ecol Manag 197:285–294.  https://doi.org/10.1016/j.foreco.2004.05.019 CrossRefGoogle Scholar
  6. Cavers S, Telford A, Arenal Cruz F, Pérez Castañeda AJ, Valencia R, Navarro C, Buonamici A, Lowe AJ, Vendramin GG (2013) Cryptic species and phylogeographical structure in the tree Cedrela odorata L. throughout the Neotropics. J Biogeogr 40:732–746.  https://doi.org/10.1111/jbi.12086 CrossRefGoogle Scholar
  7. Coelho NHP, Tambarussi EV, Aguiar BI, Roque RH, Portela RM, Braga RC, Sanson D, Silva RAR, Ferraz EM, Moreno MA, Kageyama PY, Gandara FB (2018) Understanding genetic diversity, spatial genetic structure, and mating system through microsatellite markers for conservation and sustainable use of Acrocomia aculeata (Jacq.) Lodd. ex Mart. Conserv Genet 19:879–891.  https://doi.org/10.1007/s10592-018-1061-z CrossRefGoogle Scholar
  8. Collevatti RG, Grattapaglia D, Hay JD (2001) Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol 10:349–356.  https://doi.org/10.1046/j.1365-294X.2001.01226.x CrossRefPubMedGoogle Scholar
  9. Colombo AF, Joly CA (2010) Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70(3):697–708.  https://doi.org/10.1590/S1519-69842010000400002 CrossRefPubMedGoogle Scholar
  10. Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphism in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Report 19(4):299–306.  https://doi.org/10.1007/BF02772828 CrossRefGoogle Scholar
  11. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  12. Earl DA, VonHoldt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  13. Flores TB (2018) Meliaceae in Flora do Brasil 2020 under construction. Jardim Botânico do Rio de Janeiro http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB9990. Accessed 25 June 2018
  14. Franklin IA (1980) Evolutionary change in small population. In: Soulé ME (ed) Conservation biology, the science of scarcity and diversity. Sinauer Associates, SunderlandsGoogle Scholar
  15. Gandara FB (1996) Diversidade genética, taxa de cruzamento e estrutura espacial dos genótipos em uma população de Cedrela fissilis Vell. (Meliaceae). Thesis, Universidade Estadual de CampinasGoogle Scholar
  16. Gandara FB, Tambarussi EV, Sebbenn AM, Ferraz EM, Moreno MA, Ciampi AY, Vianello RP, Grattapaglia D, Kageyama PY (2014) Development and characterization of microsatellite loci for Cedrela fissilis Vell (Meliaceae), an endangered tropical tree species. Silvae Genet 63(5):240–243.  https://doi.org/10.1515/sg-2014-0031 CrossRefGoogle Scholar
  17. Garcia MG, Silva RS, Carniello MA, Veldman JW, Rossi AAB, Oliveira LO (2011) Molecular evidence of cryptic speciation, historical range expansion, and recent intraspecific hybridization in the Neotropical season forest tree Cedrela fissilis (Meliaceae). Mol Phylogenet Evol 61:639–649.  https://doi.org/10.1016/j.ympev.2011.08.026 CrossRefPubMedGoogle Scholar
  18. Gilpin ME, Soulá ME (1986) Minimum viable populations: process of species extinction. In: Soulé ME (ed) Conservation biology, the science of scarcity and diversity. Sinauer Associates, SunderlandsGoogle Scholar
  19. Goudet J (2002) FSTAT version 2.9.3.2, a program to estimate and test gene diversities and fixation indices. Institute of Ecology, Lausanne, Switzerland. http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 20 Aug 2017
  20. Hamrick, JL (1983) The distribution of genetic variation within and among natural plant populations. In: Schonewold-Cox CM, Chambers SS, Mac-Bryde B, Thomas WL (Eds.) Genetics and conservation. Menlo ParkGoogle Scholar
  21. Hernández G, Buonamici A, Walker K, Vendramin GG, Navarro C, Cavers S (2008) Isolation and characterization of microsatellite markers for Cedrela odorata L. (Meliaceae), a high value neotropical tree. Conserv Genet 9:457–459.  https://doi.org/10.1007/s10592-007-9334-y CrossRefGoogle Scholar
  22. Hirota MM (2003) Monitoring the Brazilian Atlantic rain Forest cover. In: Galindo-Leal C, Gusmão-Câmara I (eds) State of the hotspots: the Atlantic Forest of South America: biodiversity status, threats, and outlook. Center for Applied Biodiversity Sciences and Island Press, WashingtonGoogle Scholar
  23. IUCN (2018) The IUCN red list of threatened species. Version 2018-1. http://www.iucnredlist.org. Accessed 26 July 2018
  24. Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473.  https://doi.org/10.1111/nph.12989 CrossRefPubMedGoogle Scholar
  25. Kageyama PY, Sebbenn AM, Ribas LA, Gandara FB, Castellen M, Perecim MB, Vencovsky R (2003) Diversidade genética em espécies arbóreas tropicais de diferentes estágios sucessionais por marcadores genéticos. Sci Forums 64:93–107Google Scholar
  26. Kliman R, Sheehy B, Schultz J (2008) Genetic drift and effective population size. Nat Educ 1(3):3Google Scholar
  27. Laurance WF, Bierregaard RO (1997) Tropical forest remnants: ecology, management and conservation of fragmented communities. The University of Chicago Press, ChicagoGoogle Scholar
  28. Lewinsohn TM, Prado PI (2002) Biodiversidade brasileira: síntese do estado atual do conhecimento. Editora Contexto, São PauloGoogle Scholar
  29. Loveless MD, Hamrick JL (1987) Distribución de la variación en especies de árboles tropicales. Rev Biol Trop 35:165–175Google Scholar
  30. Lowe A, Harris S, Ashton P (2005) Ecological genetics: design, analysis, and application. Blackwell Publishing, OxfordGoogle Scholar
  31. Mangaravite E, Vinson CC, Rody HVH, Garcia MG, Carniello MA, Silva RS, Oliveira LO (2016) Contemporary patterns of genetic diversity of Cedrela fissilis offer insight into the shaping of seasonal forest in eastern South America. Am J Bot 103:307–3016.  https://doi.org/10.3732/ajb.1500370 CrossRefPubMedGoogle Scholar
  32. Martins K, Chaves LJ, Buso GSC, Kageyama PY (2006) Mating system and fi ne-scale spatial genetic structure of Solanum lycocarpum St. hill. (Solanaceae) in the Brazilian Cerrado. Conserv Genet 7:957–969.  https://doi.org/10.1007/s10592-006-9140-y CrossRefGoogle Scholar
  33. Mittermeier RA, Gil PR, Hoffmann E, Pilgrim J, Mittermeier CG, Lamourux J, Fonseca AB (2004) Hotspots revisited: earth’s biodiversity richest and most endangered terrestrial ecoregions. Cemex, WashingtonGoogle Scholar
  34. Morellato LPC (1991) Estudo da fenologia de árvores, arbustos e lianas de uma floresta semi-decídua no sudeste do Brasil. Universidade Estadual de Campinas, DissertationGoogle Scholar
  35. Moura TM, Sebben AM, Martins K, Moreno MA, Oliveira GCX, Chaves LJ, Kageyama PY (2011) Allelic diversity in population of Solanum lycocarpum a.St.-Hil (Solanaceae) in a protected area and a disturbed environment. Acta Bot Bras 25:937–940.  https://doi.org/10.1590/S0102-33062011000400023 CrossRefGoogle Scholar
  36. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  37. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155.  https://doi.org/10.1111/j.1365-294X.2004.02141.x CrossRefPubMedGoogle Scholar
  38. Ortego J, Aguirre MP, Noguerales V, Cordero PJ (2015) Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper. Evol Appl 8:621–632.  https://doi.org/10.1111/eva.12273 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Patiño-Valera F (1997) Genetic resources of Swietenia and Cedrela in the neotropics. United Nations food and agriculture organization. http://www.fao.org/docrep/006/AD111E/AD111E03.htm. Accessed 16 October 2018
  40. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pennington TD, Muellner AN (2010) A monograph of Cedrela (Meliaceae). dh Books, Milborne Port, EnglandGoogle Scholar
  42. Pennington TD, Styles BD, Taylor DAH (1981) Meliaceae. Flora Neotrop 28:235–244Google Scholar
  43. Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  44. Ribeiro MC, Martensen AC, Metzer JP, Tabarelli M, Scarano F, Fortin M-J (2011) The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Heidelberg, pp 405–434CrossRefGoogle Scholar
  45. Rohlf FJ (2002) NTSYS-pc version 2.11N, Exeter Software, Setauket, New YorkGoogle Scholar
  46. Sebben AM, Carvalho AMC, Freitas MLM, Moraes SMB, Gaino APSC, Silva JM, Jolivet C, Moraes MLT (2011) Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorfii Desf. Heredity 106:134–145.  https://doi.org/10.1038/hdy.2010.33 CrossRefGoogle Scholar
  47. Sebbenn AM (2003) Tamanho amostral para conservação ex situ de espécies arbóreas com sistemas misto de reprodução. Rev Inst Flor 15:147–162Google Scholar
  48. Smith J, Earle C (1960) A revision of Cedrela fissilis (Meliaceae). Fieldiana 29(5):295–341Google Scholar
  49. Soldati MC, Fornes L, Zonneveld MV, Thomas E, Zelener N (2013) An assessment of the genetic diversity of Cedrela balansae C. DC. (Meliaceae) in northwestern Argentina by means of combined use of SSR and AFLP molecular markers. Biochem Syst Ecol 47:45–55.  https://doi.org/10.1016/j.bse.2012.10.011 CrossRefGoogle Scholar
  50. Soldati MC, Inza MV, Fornes L, Zelener N (2014) Cross transferability of SSR markers to endangered Cedrela species that grow in Argentinean subtropical forests, as a valuable tool for population genetic studies. Biochem Syst Ecol 53:8–16.  https://doi.org/10.1016/j.bse.2013.12.003 CrossRefGoogle Scholar
  51. SOS Mata Atlântica (2018) Mata Atlântica. https://www.sosma.org.br/nossas-causas/mata-atlantica/. Accessed 26 July 2018
  52. SOS Mata Atlântica, Instituto Nacional de Pesquisas Espaciais – INPE (2018) Atlas dos Remanescentes florestais da Mata Atlântica Período 2016–2017: Relatório Técnico. https://www.sosma.org.br/link/Atlas_Mata_Atlantica_2016-2017_relatorio_tecnico_2018_final.pdf. Accessed 26 July 2018
  53. Steinbach F, Longo AN (1992) Lista preliminar das espécies da flora apícola nativa da Fazenda Faxinal. Revista do Instituto Florestal 4:347–349Google Scholar
  54. Tacuatiá LO, Eggers L, Kaltchuk-Santos E, Souza-Chies TT (2012) Population genetic structure of Sisyirinchium micranthum Cav. (Iridaceae) in Itapuã State Park, southern Brazil. Genet Mol Biol 35:99–105.  https://doi.org/10.3732/ajb.1200105 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tambarussi EV, Boshier D, Vencovsky R, Freitas MLM, Di-Dio OJ, Sebbenn AM (2016) Several small: how inbreeding affects conservation of Cariniana legalis Mart. Kuntze (Lecythidaceae) the Brazilian Atlantic Forest's largest tree. Int For Rev 18:502–510.  https://doi.org/10.1505/146554816820127550 CrossRefGoogle Scholar
  56. Tambarussi EV, Sebben AM, Alves-Pereira A, Vencovsky R, Cambuim J, Silva AM, Moraes MA, Moraes MLT (2017) Dipteryx alata Vogel (Fabaceae), a neotropical tree with high levels of selfing: implications for conservation and breeding programs. Ann For Res 60:243–261.  https://doi.org/10.15287/afr.2017.842 CrossRefGoogle Scholar
  57. Tarazi R, Moreno MA, Gandara FB, Ferraz EM, Moraes MLT, Vinson CC, Ciampi AY, Vencovsky R, Kageyama PY (2010) High levels of genetic differentiation and selfing in the Brazilian cerrado fruit tree Dipteryx alata Vog. (Fabaceae). Genet Mol Biol 33:78–85.  https://doi.org/10.1590/S1415-47572010005000007 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thomas WW, Carvalho AMV, Amorim AMA, Garrison J, Arbeláez AI (1998) Plant endemism in two forests in southern Bahia, Brazil. Biodivers Conserv 7:311–322.  https://doi.org/10.1023/A:1008825627656 CrossRefGoogle Scholar
  59. Vencovsky R (1994) Variance on an estimative of outcrossing rate. Revista Brasileira de Genética 17:349–351Google Scholar
  60. Vencovsky R, Crossa J (1999) Variance effective populations size under mixed self and random mating with applications to genetic conservation of species. Crop Sci 39:1289–1294.  https://doi.org/10.2135/cropsci1999.3951282x CrossRefGoogle Scholar
  61. Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, SunderlandGoogle Scholar
  62. Wright S (1943) Isolation by distance. Genetics 28:139–156PubMedPubMedCentralGoogle Scholar
  63. Yeh FC, Yang RC, Boyle T (1999) POPGENE 32-version 1.31. Population genetics softwareGoogle Scholar
  64. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418.  https://doi.org/10.1016/0169-5347(96)10045-8 CrossRefPubMedGoogle Scholar
  65. Zachos FE, Habel JC (2011) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer Science & Business Media, TokyoCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Flávio Bertin Gandara
    • 1
  • Paulo Roberto Da-Silva
    • 2
  • Tânia Maria de Moura
    • 3
  • Fernanda Bortolanza Pereira
    • 4
  • Cláudia Regina Gobatto
    • 2
  • Elza M. Ferraz
    • 1
  • Paulo Y. Kageyama
    • 1
  • Evandro Vagner Tambarussi
    • 4
    • 5
    Email author
  1. 1.Luiz de Queiroz College of Agriculture (ESALQ/USP)University of São PauloPiracicabaBrazil
  2. 2.Plant Genetics and Molecular Biology Laboratory, Midwestern State University (UNICENTRO), Biological Science DepartmentGuarapuavaBrazil
  3. 3.Missouri Botanical GardenSaint LouisUSA
  4. 4.Forest Science Graduate ProgramSão Paulo State University (UNESP), School of AgricultureBotucatuBrazil
  5. 5.Genetics and Forest Tree Breeding Laboratory, Midwestern State University (UNICENTRO), Department of Forestry EngineeringIratiBrazil

Personalised recommendations