Advertisement

Tropical Plant Biology

, Volume 12, Issue 1, pp 21–31 | Cite as

Androgenic Diploids of Erianthus arundinaceus with Paternal Chloroplast and Mitochondrial Genomes in Backcross Progeny of Saccharum × Erianthus Intergeneric Hybrids

  • M. N. PremachandranEmail author
  • Maya Lekshmi
  • V. Raffee Viola
  • A. K. Remadevi
  • Adhini S. Pazhany
Article
  • 34 Downloads

Abstract

Erianthus arundinaceus (Retz.) Jesweit is a tropical wild grass used in sugarcane (Saccharum L.) breeding for introgression of disease resistance and high cane yield traits. In the backcross (BC2) hybrids of Saccharum officinarum×E. arundinaceus and S. spontaneum×E. arundinaceus, with E. arundinaceus as pollen parent, the progeny had plants morphologically resembling E. arundinaceus. These plants were with chromosome number 2n = 60, same as that of E. arundinaceus. Through genomic in situ hybridization it was found that all the chromosomes were of E. arundinaceus. PCR-RFLP studies of the chloroplast and mitochondrial DNA polymorphism revealed that these plants had Erianthus type cytoplasmic genomes rather than the expected maternal Saccharum type. Target region amplification polymorphism of molecular markers, comparison of morphological characters and pollen size deviation studies confirmed the possible origin of E. arundinaceus type progeny. The diploid pollen from E. arundinaceus plants is considered to be resulted in the diploid androgenesis or paternal apomixis. The diploid androgenesis with paternal transmission of chloroplast and mitochondrial genomes along with the nuclear genome of E. arundinaceus in backcross progeny of Saccharum×Erianthus intergeneric hybrids is the first report in angiosperms.

Keywords

Diploid androgenesis Erianthus arundinaceus Paternal leakage of cytoplasmic genomes Saccharum × Erianthus Sugarcane 

References

  1. Artschwager E (1948) Vegetative characteristics of some wild forms of Saccharum and related grasses. US Dep Agric Tech Bull 951:1–69Google Scholar
  2. Azhagiri AK, Maliga P (2007) Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J 52:817–823CrossRefGoogle Scholar
  3. Chen BY, Heneen WK (1989) Evidence for spontaneous diploid androgenesis in Brassica napus L. Sex Plant Reprod 2:15–17Google Scholar
  4. D’Hont A, Rao PS, Feldman P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum × Erianthus arundinaceus, with molecular markers and DNA in situ hybridization. Theor Appl Genet 91:320–326CrossRefGoogle Scholar
  5. Demesure B, Sodzi N, Petit R (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplst DNA in plants. Mol Ecol 4:129–131CrossRefGoogle Scholar
  6. Dunwell JM (2010) Haploids in flowering plants: origin and exploitation. Plant Biotechnol J 8:377–424CrossRefGoogle Scholar
  7. Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Bruss C, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438CrossRefGoogle Scholar
  8. Hedtke SM, Hillis DM (2011) The potential role of androgenesis in cytoplasmic-nuclear phylogenetic discordance. Syst Biol 60(1):87–109CrossRefGoogle Scholar
  9. Hu JG, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Report 21:289–294CrossRefGoogle Scholar
  10. Jansen RC, Den Nijs APM (1993) A statistical mixture model for estimating the proportion of unreduced pollen grains in perennial ryegrass (Lolium perenne L.) via the size of pollen grains. Euphytica 70:205–215CrossRefGoogle Scholar
  11. Lalitha R, Premachandran MN (2007) Meiotic abnormalities in intergeneric hybrids between Saccharum spontaneum and Erianthus arundinaceus (Gramineae). Cytologia 72:337–343CrossRefGoogle Scholar
  12. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  13. Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726CrossRefGoogle Scholar
  14. McCauley DE (2013) Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. New Phytol 200:966–977CrossRefGoogle Scholar
  15. Nava JLR, Buonamici A, Vendramin GG, Pichot C (2010) Molecular evidence for the natural production of homozygous Cupressus sempervirens L. lines by Cupressus dupreziana seed trees. Heredity 104:185–190CrossRefGoogle Scholar
  16. Pichot C, El Maatoui M, Raddi S, Raddi P (2001) Surrogate mother for endangered Cupressus. Nature 412:39CrossRefGoogle Scholar
  17. Pichot C, Liens B, Nava JLR, Bachelier JB, Maataoui ME (2008) Cypress surrogate mother produces haploid progeny from alien pollen. Genetics 178:379–383CrossRefGoogle Scholar
  18. Piperidis G, Christopher MJ, Carol BJ, Berding N, D’Hont A (2000) Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43:1033–1037CrossRefGoogle Scholar
  19. Piperidis N, Chen J, Deng H, Wang L, Jackson P, Piperidis G (2010) GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome 53:331–336CrossRefGoogle Scholar
  20. Raj P (2015) Molecular characterization of Saccharum species and related genera. Dissertation, Bharathiyar University, Coimbatore, IndiaGoogle Scholar
  21. Roach BT (1989) A programme for sugarcane improvement from genetic diversity: background and preliminary results. Proc Int Soc Sugar Cane Technol 20:900–909Google Scholar
  22. Sambrook J, Fritsch FF, Maniatis T (1989) Molecular cloning a laboratory manual. Cold spring harbour laboratory press. USA, New YorkGoogle Scholar
  23. Schwander T, Oldroyd BP (2016) Androgenesis: where males hijack eggs to clone themselves. Philos Trans R Soc B 371:20150534.  https://doi.org/10.1098/rstb.2015.0534 CrossRefGoogle Scholar
  24. Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, The Netherlands, pp 211–253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. N. Premachandran
    • 1
    Email author
  • Maya Lekshmi
    • 1
  • V. Raffee Viola
    • 1
  • A. K. Remadevi
    • 1
  • Adhini S. Pazhany
    • 1
  1. 1.Crop Improvement DivisionICAR-Sugarcane Breeding InstituteCoimbatoreIndia

Personalised recommendations