Advertisement

Tropical Plant Biology

, Volume 9, Issue 2, pp 109–116 | Cite as

Fine Mapping of qDor7, a Major QTL Affecting Seed Dormancy in Sorghum (Sorghum bicolor (L.) Moench)

  • Pan Li
  • Emma S. Mace
  • Yan Guo
  • Lijie Han
  • Mumu Wang
  • Yanfang He
  • Jun Chen
  • Nana Yuyama
  • David R. Jordan
  • Hongwei Cai
Article

Abstract

Seed dormancy is a key domestication trait for major crops, which is acquired in long-term systems development processes and enables the survival of plants in adverse natural conditions. It is a complex trait under polygenic control and is affected by endogenous and environmental factors. In the present study, a major seed dormancy QTL in sorghum (Sorghum bicolor (L.) Moench), qDor7, detected previously, was fine mapped using a large, multi-generational population. The qDor7 locus was delimited to a 96-kb region which contains 16 predicted gene models. These results lay a solid foundation for cloning qDor7. In addition, the functional markers tightly linked to the seed dormancy QTL may be used in marker-assisted selection for seed dormancy in sorghum.

Keywords

Sorghum Seed dormancy QTL Fine mapping Candidate gene 

Supplementary material

12042_2016_9169_MOESM1_ESM.pptx (52 kb)
Fig. S1 Two-D plot of seed germination ratio at 30 and 90 day-test. (PPTX 51 kb)
12042_2016_9169_MOESM2_ESM.docx (37 kb)
Fig. S2 Graphic genotype of the F2 individual 10LP-85 which used to generate the F3 mapping population. (DOCX 36 kb)
12042_2016_9169_MOESM3_ESM.docx (45 kb)
ESM 3 (DOCX 44.9 kb)

References

  1. Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn-de Vries H, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164(2):711–729PubMedPubMedCentralGoogle Scholar
  2. Bailin L, Foley ME (1997) Genetics and molecular control of seed dormancy. Trend Plant Sci 2:384–389CrossRefGoogle Scholar
  3. Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16Google Scholar
  4. Bekele WA, Fiedler K, Shiringani A, Schnaubelt D, Windpassinger S, Uptmoor R, Friedt W, Snowdon RJ (2014) Unravelling the genetic complexity of sorghum seedling development under low-temperature conditions. Plant Cell & Envir 37(3):707–723CrossRefGoogle Scholar
  5. Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burow G, Burke JJ, Xin Z, Franks CD (2011) Genetic dissection of early-season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Mol Breed 28(3):391–402CrossRefGoogle Scholar
  7. Cai HW, Morishima H (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100(6):840–846CrossRefGoogle Scholar
  8. Chang C, Zhang HP, Zhao QX, Feng JM, Si HQ, Lu J, Ma CX (2011) Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat. Euphytica 179:343–353CrossRefGoogle Scholar
  9. Chen Y, Cai J, Yang FX, Zhou B, Zhou LR (2014) Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis. Genet Mol Res 14(2):4879–4889CrossRefGoogle Scholar
  10. Clerkx EJM, EI-Lithy ME, Vierling E, Ruys GR, Blankestijn-DeVries H, Groot SPC, Vreugdenhil D, Koornneef M (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135(l):432–443Google Scholar
  11. Feurtado JA, Ren C, Ambrose SJ, Cutler AJ, Ross ARS, Abrams SR, Kermode AR (2008) The coat-enhanced dormancy mechanism of western white pine (Pinus monticola Dougl. exD. Don) seeds is mediated by abscisic acid homeostasis and mechanical restraint. Seed Sci Technol 36(2):283–300CrossRefGoogle Scholar
  12. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523CrossRefPubMedGoogle Scholar
  13. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Ann Rev Plant Biol 59:387–415CrossRefGoogle Scholar
  14. Gao W, Clancy J, Han F, Prada D, Kleinhofs A, Ullrich SE (2003) Molecular dissection of a dormancy QTL region near the chromosome7 (5H) L telomere in barley. Theor Appl Genet 107(3):552–559CrossRefPubMedGoogle Scholar
  15. Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 35:1769–1786CrossRefPubMedGoogle Scholar
  16. Gu XY, Kianian SF, Hareland GA, Hoffer BL, Foley ME (2005) Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet 110(6):1108–1118CrossRefPubMedGoogle Scholar
  17. Gu XY, Turnipseed EB, Foley ME (2008) The qSD12 locus controls offspring tissue-imposed seed dormancy in rice. Genetics 179(4):2263–2273PubMedPubMedCentralGoogle Scholar
  18. Gu XY, Liu T, Feng J, Suttle JC, Gibbons J (2010) The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol 73(1–2):97–104CrossRefPubMedGoogle Scholar
  19. Gu XY, Foley ME, Horvath DP, Anderson JV, Feng J, Zhang L, Mowry CR, Ye H, Suttle JC, Kadowaki K, Chen Z (2011) Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 189(4):1515–1524CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187CrossRefPubMedGoogle Scholar
  21. Guo LB, Zhu LH, Xu YB, Zeng DL, Wu P, Qian Q (2004) QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica 140:155–162CrossRefGoogle Scholar
  22. Guo Y, Li P, Yuyama N, Tan L, Fu Y, Zhu Z, Liu F, Sun C, Cai H (2015) Identification of quantitative trait locus for seed dormancy and expression analysis of four dormancy-related genes in sorghum. Trop Plant Biol 8:9–18CrossRefGoogle Scholar
  23. Hori K, Sato K, Takeda K (2007) Detection of seed dormancy QTL in multiple mapping populations derived from crosses involving novel barley germplasm. Theor Appl Genet 115(6):869–876CrossRefPubMedGoogle Scholar
  24. Karssen CM (1995) Hormonal regulation of seed development, dormancy, and germination studied by genetic control. In: Kigel J, Galili G (eds) Seed Development and Germination. Marcel Dekker, NewYork, pp. 333–350Google Scholar
  25. Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor App Genet 116(4):577–587CrossRefGoogle Scholar
  26. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  27. Lan XJ, Wang JR, Wei YM, Chen GY, Jiang QT, Peng YY, Dai SF, Zheng YL (2012) Identification of seed dormancy on chromosome 2BS from wheat cv. Chinese Spring. Afr J Agric Res 7:6191–6196CrossRefGoogle Scholar
  28. Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010) Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61(9):2499–2506CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li CD, Tarr A, Lance RCM, Harasymow S, Uhlmann J, Westcot S, Young KJ, Grime CR, Cakir M, Broughton S, Appels R (2003) A major QTL controlling seed dormancy and pre-harvest sprouting/grain alpha-amylase in two-rowed barley (Hordeum vulgare L.). Aust J Agr Res 54(12):1303–1313CrossRefGoogle Scholar
  30. Li C, Zhou A, Sang T (2006) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–193CrossRefPubMedGoogle Scholar
  31. Li M, Yuyama N, Luo L, Hirata M, Cai H (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24(1):41–47CrossRefGoogle Scholar
  32. Lijavetzky D, Martínez MC, Carrari F, Hopp HE (2000) QTL analysis and mapping of pre-harvest sprouting resistance in sorghum. Euphytica 112(2):125–135CrossRefGoogle Scholar
  33. Lohwasser U, Rehman Arif MA, Bomer A (2013) Discovery of loci determining pre-harvest sprouting and dormancy in wheat and barley applying segregation and association mapping. Biol Plantarum 57:663–674CrossRefGoogle Scholar
  34. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, et al. (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nature Commun 4. doi: 10.1038/ncomms3320
  35. Mace E, Tai S, Innes D, Godwin I, Hu W, Campbell B, Gilding E, Cruickshank A, Prentis P, Wang J, Jordan D (2014) The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biol 14(1):253CrossRefPubMedPubMedCentralGoogle Scholar
  36. Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M (2015) MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol 56:e6CrossRefPubMedPubMedCentralGoogle Scholar
  37. Manly KF, Cudmore RH, Meer JM (2001) Map Manager QTX, cross platform software for genetic mapping. Mamm Genome 12:930–932CrossRefPubMedGoogle Scholar
  38. Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SD, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58(5):1035–1045CrossRefPubMedGoogle Scholar
  39. McCarty DR, Carson CB, Stinard PS, Robertson DS (1989) Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1:523–532CrossRefPubMedPubMedCentralGoogle Scholar
  40. McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66(8):95–905Google Scholar
  41. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acid Res 8:4321–4325CrossRefGoogle Scholar
  42. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New YorkGoogle Scholar
  43. Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:8897–8902CrossRefPubMedPubMedCentralGoogle Scholar
  44. Penfield S, Li Y, Gilday AD, et al. (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18(8):1887–1899CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prada D, Ullrich S, Molina-Cano J, Cistué L, Clancy JA, Romagosa I (2004) Genetic control of dormancy in a Triumph/Morex cross in barley. Theor Appl Genet 109(l):62–70CrossRefPubMedGoogle Scholar
  46. Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616CrossRefGoogle Scholar
  47. Rampling LR, Harker N, Shariflou MR, Morell MK (2001) Detection and analysis systems for microsatellite markers in wheat. Austral J Agric Res 52:1131–1141CrossRefGoogle Scholar
  48. Rathi S, Baruah A, Chowdhury R, et al. (2011) QTL analysis of seed dormancy in indigenous rice of Assam, India. Cereal Res Commu 39(1):137–146CrossRefGoogle Scholar
  49. Rehman Arif MA, Neumann K, Nagel M, Kobiljski B, Lohwasser U, Bomer A (2012) An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica 188:409–417CrossRefGoogle Scholar
  50. Rikiishi K, Maekawa M (2010) Characterization of a novel wheat (Triticum aestivum L.) mutant with reduced seed dormancy. J Cereal Sci 51:292–298CrossRefGoogle Scholar
  51. Singh R, Matus-Cddiz M, Baga M, Hud P, Chibbar RN (2010) Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica 174:391–408CrossRefGoogle Scholar
  52. Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sugimoto K (2013) Sdr7, a quantitative trait locus for seed dormancy in rice, encodes an ortholog of the Arabidopsis protein Delay of Germination 1. In Plant and Animal Genome XXI Conference, Plant and Animal GenomeGoogle Scholar
  54. Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107(13):5792–5797CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595PubMedPubMedCentralGoogle Scholar
  56. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493CrossRefPubMedGoogle Scholar
  57. Upadhyaya HD, Wang YH, Dintyala SV, Dwivedi SL, Prasad PV, Burrell AM, Klein R, Morris GP, Klein PE (2015) Association mapping of germinability and seedling vigor in sorghum under controlled low temperature conditions. Genome. doi: 10.1139/gen-2015-0122 PubMedGoogle Scholar
  58. van der Schaar W, Alonso-Blanco C, Leon-Kloosterziel KM, Jansen RC, van Ooijen JW, Koornneef M (1997) QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79:190–200CrossRefGoogle Scholar
  59. Wan JM, Jiang L, Tang JY, Wang CM, Hou MY, Jing W, Zhang LX (2006) Genetic dissection of the seed dormancy trait in cultivated rice (Oryza sativa L.). Plant Sci 170(4):786–792CrossRefGoogle Scholar
  60. Wang H, Chen G, Zhang H, Liu B, Yang Y, Qin L, Chen E, Guan Y (2014) Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Euphytica 196(1):117–127CrossRefGoogle Scholar
  61. Xie K, Jiang L, Lu BY, Yang CY, Li LF, Liu X, Zhang L, Zhao ZG, Wan JM (2011) Identification of QTLs for seed dormancy in rice (Oryza sativa L.). Plant Breed 130:328–332CrossRefGoogle Scholar
  62. Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J (2012) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot 63(5):1809–1822CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yonemaru JI, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M (2009) Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res 16(3):187–193CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pan Li
    • 1
    • 2
  • Emma S. Mace
    • 3
  • Yan Guo
    • 1
    • 2
  • Lijie Han
    • 1
    • 2
  • Mumu Wang
    • 1
    • 2
  • Yanfang He
    • 1
    • 2
  • Jun Chen
    • 1
    • 2
  • Nana Yuyama
    • 4
  • David R. Jordan
    • 5
  • Hongwei Cai
    • 1
    • 2
    • 4
  1. 1.Department of Plant Genetics, Breeding and Seed Science, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Crop Genetic Improvement and GenomeMinistry of AgricultureBeijingChina
  3. 3.Department of Agriculture and Fisheries (DAF)WarwickAustralia
  4. 4.Forage Crop Research InstituteJapan Grassland Agricultural and Forage Seed AssociationTochigiJapan
  5. 5.Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandWarwickAustralia

Personalised recommendations