Tropical Plant Biology

, Volume 6, Issue 2–3, pp 69–84 | Cite as

Thermal-Stable Proteins of Fruit of Long-Living Sacred Lotus Nelumbo nucifera Gaertn var. China Antique

  • J. Shen-MillerEmail author
  • Petra Lindner
  • Yongming Xie
  • Sarah Villa
  • Kerry Wooding
  • Steven G. Clarke
  • Rachel R. O. Loo
  • Joseph A. Loo


Single-seeded fruit of the sacred lotus Nelumbo nucifera Gaertn var. China Antique from NE China have been shown to remain viable for as long as ~1,300 years, determined by direct radiocarbon-dating, and to have a germination rate of 84 %. The pericarp, a fruit tissue that encloses the single seeds of Nelumbo, is one of the major factors contributing to fruit longevity. Proteins that are heat stable and have a protective function are equally important to such centuries-long seed viability. We document proteins of Nelumbo fruit that are able to withstand heating, 32 % of which remained soluble in the 110 °C-treated embryo axis of a 549-year-old fruit and 76 % retained fluidity in its cotyledons. The genome of Nelumbo has recently been published and annotated. The amino-acid sequences of 11 “thermal proteins” (soluble at 100 °C) of modern Nelumbo embryo axes and cotyledons, identified by mass spectrometry, Western blot and bioassay, are assembled and aligned with those of an archaeal hyperthermophile Methancaldococcus jannaschii (“Mj,” an anaerobic methanogen having a growth optimum of 85 °C) and with those of five mesophile angiosperms. These thermal proteins have roles in protection and repair under stress. More than half (55 %) of the durable Nelumbo thermal proteins are present in the archaean Mj, indicating their ancient history. One Nelumbo protein-repair enzyme exhibits activity at 100 °C, having a heat-tolerance higher than the comparable enzyme of Arabidopsis. A list of 30 sequenced but unassembled thermal proteins of Nelumbo is appended.


Nelumbo nucifera China antique Heat-soluble (100 °C) Proteins Hyperthermophile-Mesophile protein-alignments Stress-and-repair thermoproteins 







Copper-zinc superoxide dismutase


1-Cys peroxiredoxin




Elongation factor-1α


Expressed sequence tag


Heat-shock protein 80


Liquid-chromatography tandem mass-spectrometry


Methancaldococcus jannaschii


Protein L-isoaspartyl methyltransferase


Reactive oxygen-species



We thank the reviewers for valuable suggestions, C. Haas-Blaby for bioinformatics and protein alignments, J.W. Schopf for constructive comments, J. Lowenson for helpful discussions, and H. Nguyen for compilation assistance of the MS data. For antisera, we are grateful to P. Viitanen for CPN20 and CPN60, T. Close for dehydrin, and B. Downie and D. Martin for PIMT1. Work in SGC laboratory is supported by NIH grant GM206020. We also thank K.O. Stetter whose seminal research on hyperthermophiles stimulated this ‘hot protein’ study of Nelumbo enzymes.

Supplementary material

12042_2013_9124_MOESM1_ESM.pdf (89 kb)
ESM 1 (PDF 88 kb)
12042_2013_9124_MOESM2_ESM.pdf (105 kb)
ESM 2 (PDF 104 kb)
12042_2013_9124_Fig7_ESM.jpg (79 kb)
Fig. S-1a

(JPEG 78 kb)

12042_2013_9124_MOESM3_ESM.tif (22.9 mb)
High Resolution Image (TIFF 23439 kb)
12042_2013_9124_Fig8_ESM.jpg (105 kb)
Fig. S-1b

(JPEG 105 kb)

12042_2013_9124_MOESM4_ESM.tif (23.6 mb)
High Resolution Image (TIFF 24135 kb)
12042_2013_9124_Fig9_ESM.jpg (117 kb)
Fig. S-1c

(JPEG 117 kb)

12042_2013_9124_MOESM5_ESM.tif (23.5 mb)
High Resolution Image (TIFF 24056 kb)
12042_2013_9124_Fig10_ESM.jpg (212 kb)
Fig. S-1d

(JPEG 211 kb)

12042_2013_9124_MOESM6_ESM.tif (25.4 mb)
High Resolution Image (TIFF 25985 kb)
12042_2013_9124_Fig11_ESM.jpg (261 kb)
Fig. S-1e

(JPEG 261 kb)

12042_2013_9124_MOESM7_ESM.tif (25.3 mb)
High Resolution Image (TIFF 25907 kb)
12042_2013_9124_Fig12_ESM.jpg (266 kb)
Fig. S-1f

(JPEG 266 kb)

12042_2013_9124_MOESM8_ESM.tif (25.1 mb)
High Resolution Image (TIFF 25670 kb)
12042_2013_9124_Fig13_ESM.jpg (268 kb)
Fig. S-1g

(JPEG 267 kb)

12042_2013_9124_MOESM9_ESM.tif (25.4 mb)
High Resolution Image (TIFF 26021 kb)
12042_2013_9124_Fig14_ESM.jpg (49 kb)
Fig. S-1g

(JPEG 49 kb)

12042_2013_9124_MOESM10_ESM.tif (22.5 mb)
High Resolution Image (TIFF 23087 kb)
12042_2013_9124_Fig15_ESM.jpg (262 kb)
Fig. S-1h

(JPEG 262 kb)

12042_2013_9124_MOESM11_ESM.tif (25.4 mb)
High Resolution Image (TIFF 26058 kb)
12042_2013_9124_Fig16_ESM.jpg (89 kb)
Fig. S-1h

(JPEG 88 kb)

12042_2013_9124_MOESM12_ESM.tif (23 mb)
High Resolution Image (TIFF 23541 kb)
12042_2013_9124_Fig17_ESM.jpg (243 kb)
Fig. S-1i

(JPEG 243 kb)

12042_2013_9124_MOESM13_ESM.tif (23.8 mb)
High Resolution Image (TIFF 24382 kb)
12042_2013_9124_Fig18_ESM.jpg (25 kb)
Fig. S-1i

(JPEG 24 kb)

12042_2013_9124_MOESM14_ESM.tif (22.1 mb)
High Resolution Image (TIFF 22649 kb)
12042_2013_9124_Fig19_ESM.jpg (218 kb)
Fig. S-1j

(JPEG 218 kb)

12042_2013_9124_MOESM15_ESM.tif (24.3 mb)
High Resolution Image (TIFF 24875 kb)
12042_2013_9124_Fig20_ESM.jpg (262 kb)
Fig. S-1k

(JPEG 262 kb)

12042_2013_9124_MOESM16_ESM.tif (24.9 mb)
High Resolution Image (TIFF 25507 kb)
12042_2013_9124_Fig21_ESM.jpg (285 kb)
Fig. S-1k

(JPEG 284 kb)

12042_2013_9124_MOESM17_ESM.tif (25.8 mb)
High Resolution Image (TIFF 26394 kb)
12042_2013_9124_Fig22_ESM.jpg (137 kb)
Fig. S-1k

(JPEG 137 kb)

12042_2013_9124_MOESM18_ESM.tif (23.8 mb)
High Resolution Image (TIFF 24358 kb)


  1. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(327):1331–1341PubMedCrossRefGoogle Scholar
  2. Bersch U, Soll J, Seetharam R, Viitanen P (1992) Identification, characteristic and DNA sequencing of a functional “double” GroES-like chaperonine from chloroplasts of higher plants. Proc Natl Acad Sci (USA) 89:8696–8700CrossRefGoogle Scholar
  3. Boonyaratanakornkit BB, Simpson AJ, Whitehead TA et al (2005) Transcriptional profiling of the hyperthermophilic methanoarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ Microbiol 7(6):789–797PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 27:248–254CrossRefGoogle Scholar
  5. Bult CJ, White O, Olsen GJ, et al (1996) Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273:1058–1073Google Scholar
  6. Burnett WN (1981) “Western blotting” electrophoretic transfer of proteins from sodium dodecylsulfate-polyacrylamide gels to unmodified nitrocellulose, and radiographic detection with antibody and radio-iodinated protein A. Anal Biochem 112:195–203CrossRefGoogle Scholar
  7. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BNC Bioinforma 10:421CrossRefGoogle Scholar
  8. Chang YJ (1978) Thousand-year-old Nelumbo has awakened. Fossil 1:22–23 (in Chinese)Google Scholar
  9. Chen CH, Chen SM, Zhou KS (1965) Palynological analysis of the Holocene Nymphaea seed-bearing deposits at the vincinity in Liaoning Peninsula. Quaternaria Sin 4:167–173 (in Chinese)Google Scholar
  10. Chen JW, Dodia C, Feinstein SI et al (2000) 1-Cys peroxiredoxin, a Bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 275(37):28421–28427PubMedCrossRefGoogle Scholar
  11. Chen D, Zheng X, Li G et al (2011) Molecular cloning and expression of two cytosolic copper-zinc superoxide dismutases genes from Nelumbo nucifera. Appl Biochem Biotechnol 163:679–691CrossRefGoogle Scholar
  12. Chu P, Chen H, Zhou Y et al (2012) Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta 235:1271–1288PubMedCrossRefGoogle Scholar
  13. Clarke S (2003) Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damage proteins for repair. Ageing Res Rev 2:263–285PubMedCrossRefGoogle Scholar
  14. Close TJ (1997) Dehydrin, a commonality in response of plants to dehydration and low temperature. Physiol Plant 100:291–296CrossRefGoogle Scholar
  15. De Souza CE, Grossi-De-Sa MF, Lima TB et al (2011) Plant storage proteins with antimibrobial avtivity novel insights into plant defense mechanisms. FASEB 25(10):3290–3305CrossRefGoogle Scholar
  16. DeWeerdt SE (2002) The first sequenced extremophile, what scientists have learned from the M. jannaschii genome. Genome News Network, Feb 1, 2002
  17. Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signa 15(4):1129–1159CrossRefGoogle Scholar
  18. Ding YF, Cheng HY, Song SQ (2008) Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds. Sci China Ser C: Life Sci 51(9):824–853Google Scholar
  19. Dunwell JM, Kuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64(1):153–179PubMedCrossRefGoogle Scholar
  20. Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor 1-α. Plant Cell 6:893–905PubMedGoogle Scholar
  21. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797PubMedCrossRefGoogle Scholar
  22. Edgar RS, Green EW, Zhao Y et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–467PubMedGoogle Scholar
  23. Eriksson SK, Kutzer M, Procek J et al (2011) Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold induced plant stress protein. Plant Cell 23:2391–2404PubMedCrossRefGoogle Scholar
  24. Esau K, Kosakai H (1975) Laticifers in Nelumbo nucifera Gaertn.: distribution and structure. Am Bot 39:713–719Google Scholar
  25. Fu J, Momcilovic I, Prasad PVV (2012) Roles of protein synthesis elongation factor EF-Tu in heat tolerance in plants. J Bot ID 835836:8ppGoogle Scholar
  26. Gaucher EA, Miyamoto MM, Benner SA (2001) Function-structure analysis of proteins using covarion-based evolutionary approaches elongation factors. USA PNAS 98:548–552CrossRefGoogle Scholar
  27. Gill T, Kumar A, Ahuja PS, Sreenivasulu (2010) Over-expression of Potentilla superoxide dismutase improve salt stress tolerance during germination and growth in Arabidopsis thaliana. J Plant Genet Trangenics 1:1–10Google Scholar
  28. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: multisequence alignments in postscript. Bioinformatics 15:305–308PubMedCrossRefGoogle Scholar
  29. Griffith SC, Sawaya MR, Boytz DR et al (2001) Crystal structures of a repair methyltransferase from Pyrococcus furiosus with its L-isoaspartyl peptide substrate. J Mol Biol 313(5):1103–1116PubMedCrossRefGoogle Scholar
  30. Hill JE, Hemmingsen SM (2001) Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones 6(3):190–200PubMedCrossRefGoogle Scholar
  31. Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66(21):3811–3826CrossRefGoogle Scholar
  32. Huang GH (1987) Systematic and distribution of Nelumbo nucifera Gaertn. In: China Nelumbo, Chp 2, Academia Sinica Wuhan Bot Inst, Science Publ pp 9–12 (in Chinese)Google Scholar
  33. Huang SZ, Tang XJ, Lu CB et al (2000) Characteristic of superoxide dismutase in lotus seeds. Acta Physiol Sin 26(6):492–496, English abstractGoogle Scholar
  34. Kasting JF, Howard MT (2006) Atmospheric composition and climate on the early earth. Philos Trans R Soc Lond Bio Sci 361(1474):1733–1742CrossRefGoogle Scholar
  35. Kim R, Lai L, Lee HH et al (2003) On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii. PNAS-USA 100(14):8151–8155PubMedCrossRefGoogle Scholar
  36. Koning AJ, Rose R, Comai L (1992) Developmental expression of tomato heat-shock cognate protein 80. Pl Physiol 100:801–811CrossRefGoogle Scholar
  37. Kowalski JM, Kelly RM, Konisky J et al (1998) Purification and functional characterization of a charperone from Methanococcus jannaschii. Syst Appl Microbiol 21:173–178PubMedCrossRefGoogle Scholar
  38. Kwon SY, Jeong YJ, Lee HS et al (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbic peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882CrossRefGoogle Scholar
  39. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of the bacteriophage. Nature 227:680–685PubMedCrossRefGoogle Scholar
  40. Lal SK, Lee C, Sachs MM (1998) Differential regulation of enolase during anaerobiosis in maize. Pl Physiol 118:1285–1293CrossRefGoogle Scholar
  41. Mahanty S, Kaul T, Pandey P et al (2012) Biochenical and molecular analyses of copper-zinc superoxide dismutase from a C4 plant Pennisetum glaucum reveals an adaptive role in response to oxidative stress. Gene 505:309–317PubMedCrossRefGoogle Scholar
  42. Marcus JP, Green JL, Goulter KC, Manners JM (1999) A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J 19(6):699–710PubMedCrossRefGoogle Scholar
  43. Ming R, VanBuren R, Liu Y et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14(5):R41PubMedCrossRefGoogle Scholar
  44. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630CrossRefGoogle Scholar
  45. Nelson DR, Schuler MA (2013) Cytochrome P450 genes from the sacred lotus Genome. Trop Plant Biol. doi: 10.1007/s12042-013-9119-z Google Scholar
  46. Nguyen BA, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple hidden Markov model for nuclear signal prediction. BMC Bioinformatics 10:202. doi: 10.1186/1471-2105-10-202 CrossRefGoogle Scholar
  47. Ohga I (1926) On structure of some ancient, still viable fruits of Indian lotus, with special reference to their prolonged dormancy. Jpn J Bot 3:1–20Google Scholar
  48. Ohga I (1927) Supramaximal temperature and life duration of the ancient fruits of Indian lotus. Bot Mag 41:161–172Google Scholar
  49. Pennington SR, Dunn MJ (2001) Proteomics, from protein sequence to function. BIOS Sci Publ Ltd, UK, p 313Google Scholar
  50. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567PubMedCrossRefGoogle Scholar
  51. Priestley DA (1986) Seed aging, implication of seed storage and persistence in the soil. Comstock Publ Assoc, Ithaca, 304 ppGoogle Scholar
  52. Priestley DA, Posthumus MA (1982) Extreme longevity of lotus seeds from Pulantien. Nature 299(9):148–149CrossRefGoogle Scholar
  53. Qu CP, Xu ZR, Liu GJ et al (2010) Differential expression of copper-zinc superoxide dismutase gene of Polygonum sibiricum leaves, stems and underground stems, subjected to high-salt stress. Int J Mol Sci 11:5234–5245PubMedCrossRefGoogle Scholar
  54. Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805–7812PubMedCrossRefGoogle Scholar
  55. Robert F, Chaussidon M (2006) A paleotemperature curve for the Precambrian oceans based on silicon isotopes in chert. Nature 443:969–972PubMedCrossRefGoogle Scholar
  56. Schopf JW (1994) The oldest known records of life: stromatolites, microfossils, and organic matter from the early Archaean of South Africa and Western Australia. In: Bengtsen S (ed) Early life on earth. Columbia Univ Press, NY, pp 193–206Google Scholar
  57. Schopf JW (2011) The paleobiological record of photosynthesis. Photosynth Res 107:87–101CrossRefGoogle Scholar
  58. Shaw MF (1929) A microchemical analysis study of the fruit coat of Nelumbo lutea. Am J Bot 16:259–276CrossRefGoogle Scholar
  59. Shen-Miller J, Mudgett MB, Schopf JW et al (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. Am J Bot 82(11):1367–1380CrossRefGoogle Scholar
  60. Shen-Miller J, Schopf JW, Harbottle G et al (2002) Long-living lotus: germination and soil γ-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormality of offspring. Am J Bot 89(2):236–247PubMedCrossRefGoogle Scholar
  61. Shen-Miller J, Aung LH, Turek J, Schopf JW, Tholandi M, Yang M, Czaja A (in press) Centuries-old viable fruit of Sacred Lotus Nelumbo nucifera Gaertn var. China Antique. Trop Plant BiolGoogle Scholar
  62. Shevchenko A, Wilm M, Vorm, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gells. Annal Chem 68:850–858CrossRefGoogle Scholar
  63. Small T, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4(6):1581–1590PubMedCrossRefGoogle Scholar
  64. Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158CrossRefGoogle Scholar
  65. Tatsuka M, Mitsui H, Wada M et al (1992) Elongation factor-1 alpha gene determines susceptibility to transformation. Nature 359(6393):333–336PubMedCrossRefGoogle Scholar
  66. Tele Images-Nature (2003) Eternal Seeds, a documentary of Nelumbo nucifera: Xipaozi, China, USA, Japan & Africa. In: Power Plants (Series #4). Dir L. Frapat, Assist Dir I. Han, Camera P. Moreau, Sound P. Fleurant. Paris, France, 50 minGoogle Scholar
  67. Thapar N, Kim AK, Clarke S (2001) Distinct patterns of expression but similar biochemical properties of protein L-isoaspartyl methyltransferase in higher plants. Plant Physiol 125(2):1023–1035PubMedCrossRefGoogle Scholar
  68. Thirumalia D, Lorimer G (2001) Chaperonine-mediated protein folding. Ann Rev Biophys Biochem Struc 30:245–269CrossRefGoogle Scholar
  69. Tiedmann J, Neubohn B, Muntz K (2000) Different functions of vicilin and legumin are reflected in the histopattern of globulin mobilization during germination of vetch (Vicia sativa L.). Planta 211:1–12CrossRefGoogle Scholar
  70. Towbin H, Staehlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures ans some applications. Proc Nat Acad Sci (USA) 76:4350–4354CrossRefGoogle Scholar
  71. Unsworth LD, Van Der Ost J, Koutsopoulos S (2007) Hyperthermopholic enzymes – stability, activity and implementation strategies for high temperature applications. FESB J 274:4044–4056Google Scholar
  72. Van Der Straeten D, Rodrigues-Pousada A, Goodman HM, Van Montagu M (1991) Plant enolase: gene structure, experession, and evolution. Plant Cell 3:719–735PubMedGoogle Scholar
  73. Vieille C, Zeikus GJ (2001) Hyperthermophlic enzyme sources, uses, and molecular mechanisms for thermostability. Microbiol Mole Biol Rev 65(1):1–43Google Scholar
  74. Viitanen PV, Schmidt M, Bucher J et al (1995) Functional characterization of the higher plant chloroplast chaperonins. J Biol Chem 270:18158–18164PubMedCrossRefGoogle Scholar
  75. Villa ST, Xu Q, Downie AB, Clarke SG (2006) Arabidopsis protein repair L-isoaspartyl methyltrransferase: predominant activities at lethal temperatures. Physiol Plant 128:581–592PubMedCrossRefGoogle Scholar
  76. Xu Q, Belcastrp MP, Villa ST et al (2004) A second protein L-isoaspartyl transferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. Pl Physiol 136:2652–2664CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Shen-Miller
    • 1
    Email author
  • Petra Lindner
    • 2
  • Yongming Xie
    • 3
  • Sarah Villa
    • 4
  • Kerry Wooding
    • 3
  • Steven G. Clarke
    • 4
  • Rachel R. O. Loo
    • 3
  • Joseph A. Loo
    • 3
  1. 1.IGPP Center for the Study of Evolution and the Origin of Life, Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Lehrstuhl MikrobiologieRegensburg UniversityRegensburgGermany
  3. 3.Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesUSA
  4. 4.Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations