Tropical Plant Biology

, Volume 5, Issue 4, pp 261–276 | Cite as

Genomic Resources for Evolutionary Studies in the Large, Diverse, Tropical Genus, Begonia

  • Adrian Christopher Brennan
  • Stephen Bridgett
  • Mobina Shaukat Ali
  • Nicola Harrison
  • Andrew Matthews
  • Jaume Pellicer
  • Alex David Twyford
  • Catherine Anne Kidner
Article

Abstract

Begonia is one of the ten largest angiosperm genera with over 1,500 species found throughout the tropics. To use this group as a model for the evolution of diversity in tropical herbaceous plants, we have produced three species transcriptomes, physical genome size measures, and two backcross genetic maps. We chose to focus on two Central American species, B. conchifolia and B. plebeja, and one SE Asian species, B. venusta, allowing us to pose questions at widely different evolutionary scales within the genus. We used next generation sequencing of cDNA libraries to produce annotated transcriptome databases for each of the three species. Though Begonia is functionally diploid, transcriptome analysis suggested a genome duplication occurred at or near the base of the Begonia clade. The genetic maps were built from first generation backcrosses in both directions between B. plebeja and B.conchifolia using 105 SNP markers in genes known to regulate development that were identified from the transcriptomes and the map bulked out with 226 AFLP loci. The genetic maps had 14 distinct linkage groups each and mean marker densities of between 3.6 and 5.8 cM providing between 96 and 99 % genomic coverage within 10 cM. We measured genome size 1C value of 0.60 and 0.63 pg for B. conchifolia and B. plebeja corresponding to recombination rates of between 441 and 451 Kb per cM in the genetic maps. Altogether, these new data represent a powerful new set of molecular genetic tools for evolutionary study in the genus Begonia.

Keywords

Begonia Genetic map Transcriptome Tropical diversity Genome duplication 

Supplementary material

12042_2012_9109_MOESM1_ESM.docx (13 kb)
Supplementary note 1AFLP protocol and primers (DOCX 13 kb)
12042_2012_9109_MOESM2_ESM.xls (82 kb)
Supplementary table 1Mapping details (XLS 82 kb)
12042_2012_9109_MOESM3_ESM.docx (17 kb)
Supplementary table 2Mapping details (DOCX 16.9 KB)
12042_2012_9109_Fig8_ESM.jpg (199 kb)
Supplementary figure 1

GO terms for tri-scriptome contigs (JPEG 199 kb)

12042_2012_9109_MOESM4_ESM.tif (210 kb)
High resolution image(TIFF 209 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH (2008) Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol 25:2445–2455PubMedCrossRefGoogle Scholar
  3. Barker MS, Dlugosch KM, Dinh L, Challa RS, Kane NC, Rieseberg LH (2010) EvoPipes.net: bioinformatic tools for ecological and evolutionary genomics. Evol Bioinformatics Online 6:143–149CrossRefGoogle Scholar
  4. Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7:732–736PubMedCrossRefGoogle Scholar
  5. Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995PubMedCrossRefGoogle Scholar
  6. Burt Utley K (1985) A revision of Central American species of Begonia section Gireoudia (Begoniaceae). Tulane Stud Zool Bot 25:1–131Google Scholar
  7. Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182PubMedGoogle Scholar
  8. Choi W, Baek D, Oh DH, Park J, Hong H, Kim WY, Bohnert HJ, Bressan RA, Park HC, Yun DJ (2011) NKS1, Na(+)- and K(+)-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis. Phytochemistry 72:330–336PubMedCrossRefGoogle Scholar
  9. Day IS, Reddy AS (1998) Isolation and characterization of two cyclin-like cDNAs from Arabidopsis. Plant Mol Biol 36:451–461PubMedCrossRefGoogle Scholar
  10. Dewitte A, Leus L, Eeckhaut T, Vanstechelman I, Van Huylenbroeck J, Van Bockstaele E (2009) Genome size variation in Begonia. Genome 52:829–838PubMedCrossRefGoogle Scholar
  11. Dewitte A, Twyford A, Thomas D, Kidner C, Van Huylenbroeck J (2011) The origin of diversity in Begonia: genome dynamism, population processes and phylogenetic patterns Biodiversity Book 2. InTech p. 27–52Google Scholar
  12. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128PubMedCrossRefGoogle Scholar
  13. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244PubMedCrossRefGoogle Scholar
  14. Drummond CS, Eastwood RJ, Miotto STS, Hughes CE (2012) Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 63:443–460CrossRefGoogle Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  16. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15PubMedCrossRefGoogle Scholar
  17. Elmer KR, Meyer A (2011) Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol 26:298–306PubMedCrossRefGoogle Scholar
  18. Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716PubMedGoogle Scholar
  19. Fraley C, Raftery AE (2006) MCLUST version 3 for R: normal mixture modeling and model-based clustering, technical report no. 504, Department of Statistics, University of WashingtonGoogle Scholar
  20. Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein- coding DNA sequences. Mol Biol Evol 11:725–736PubMedGoogle Scholar
  21. Goodall-Copestake WP, Harris DJ, Hollingsworth PM (2009) The origin of a mega- diverse genus: dating Begonia (Begoniaceae) using alternative datasets, calibrations and relaxed clock methods. Bot J Linn Soc 159:363–380CrossRefGoogle Scholar
  22. Greilhuber J, Dolezel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents. Ann Bot 95:255–260PubMedCrossRefGoogle Scholar
  23. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281PubMedCrossRefGoogle Scholar
  24. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  25. Hughes M, Hollingsworth PM (2008) Population genetic divergence corresponds with species-level biodiversity patterns in the large genus Begonia. Mol Ecol 17:2643–2651PubMedCrossRefGoogle Scholar
  26. Hughes M, Hollingsworth P, Miller A (2003) Population genetic structure in the endemic Begonia of the Socotra archipelago. Biol Conserv 113:277–284CrossRefGoogle Scholar
  27. Hvoslef-Eide AK, Munster C (2007) Begonia. History and breeding. In: Anderson NO (ed) Flower breeding and genetics. Springer, pp. 241–275Google Scholar
  28. Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J 21:898–908PubMedCrossRefGoogle Scholar
  29. Kadota Y, Shirasu K (2012) The HSP90 complex of plants. Biochim Biophys Acta 1823:689–697PubMedCrossRefGoogle Scholar
  30. Kaeuffer R, Peichel CL, Bolnick DI, Hendry AP (2012) Parallel and nonparallel aspects of ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback. Evolution 66:402–418PubMedCrossRefGoogle Scholar
  31. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298PubMedCrossRefGoogle Scholar
  32. Kiew R (2005) Begonias of peninsular Malaysia. Natural History Publications (Borneo) in association with Singapore Botanic Gardens National Parks BoardGoogle Scholar
  33. Kishimoto S, Aida R, Shibata M (2002) Agrobacterium tumefaciens-mediated transformation of Elatior Begonia (Begonia x hiemalis Fotsch). Plant Sci 162:697–703CrossRefGoogle Scholar
  34. Korf I, Yandell M, Bedell J (2003) BLAST. O'Reilly MediaGoogle Scholar
  35. Legro RAH, Doorenbos J (1971) Chromosome numbers in Begonia: 2. Neth J Agric Sci 19:176–183Google Scholar
  36. Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888PubMedCrossRefGoogle Scholar
  37. Ma B, Tromp J, Li M (2002) PatternHunter: faster and more sensitive homology search. Bioinformatics 18:440–445PubMedCrossRefGoogle Scholar
  38. Matolweni L, Balkwill K, McLellan T (2000) Genetic diversity and gene flow in the morphologically variable, rare endemics Begonia dregei and Begonia homonyma (Begoniaceae). Am J Bot 87:431–439PubMedCrossRefGoogle Scholar
  39. Melo M, Warren BH, Jones PJ (2011) Rapid parallel evolution of aberrant traits in the diversification of the Gulf of Guinea white-eyes (Aves, Zosteropidae). Mol Ecol 20:4953–4967PubMedCrossRefGoogle Scholar
  40. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  41. Nakamura N, Huang CJ, Rubite RR, Leong WC, Kono Y, Yang HA, Peng CI (2012) Isolation of compound microsatellite markers in Begonia fenicis (Begoniaceae) endemic to East and Southeast Asian islands. Am J Bot 99:e20–e23PubMedCrossRefGoogle Scholar
  42. National Centre for Biotechnology Information (2002) Chapter 18; the reference sequence (RefSeq) project In: The NCBI handbook. National Library of Medicine, Bethesda, MDGoogle Scholar
  43. Neale S, Goodall-Copespeak W, Kidner C (2006) The evolution of diversity in Begonia. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. Global Science BooksGoogle Scholar
  44. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437PubMedCrossRefGoogle Scholar
  45. Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363PubMedCrossRefGoogle Scholar
  46. Parkinson J, Anthony A, Wasmuth J, Schmid R, Hedley A, Blaxter M (2004) PartiGene- constructing partial genomes. Bioinformatics 20:1398–1404PubMedCrossRefGoogle Scholar
  47. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. PNAS 101:9903–9908PubMedCrossRefGoogle Scholar
  48. Petit C, Thompson JD (1999) Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evol Ecol 13:45–66CrossRefGoogle Scholar
  49. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135PubMedCrossRefGoogle Scholar
  50. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  51. Sangster TA, Salathia N, Undurraga S, Milo R, Schellenberg K, Lindquist S, Queitsch C (2008) HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. PNAS 105:2963–2968PubMedCrossRefGoogle Scholar
  52. Schaefer H, Heibl C, Renner SS (2009) Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc Biol Sci 276:843–851PubMedCrossRefGoogle Scholar
  53. Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165PubMedCrossRefGoogle Scholar
  54. Singer T, Fan YP, Chang HS, Zhu T, Hazen S, Briggs S (2006) A high-resolution map of Arabidopsis recombinant inbred lines by whole-genome exon array hybridization. PLoS Genet 2:1352–1361CrossRefGoogle Scholar
  55. Schmid R, Blaxter ML (2008) Annotator: GO, EC and KEGG annotation of EST datasets. BMC Bioformatics 9:180Google Scholar
  56. Song H, Zhao R, Fan P, Wang X, Chen X, Li Y (2009) Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta 229:955–964PubMedCrossRefGoogle Scholar
  57. Sterck L, Rombauts S, Vandepoele K, Rouzé P, Van de Peer Y (2007) How many genes are there in plants (… and why are they there)? Curr Opin Plant Biol 10:199–203PubMedCrossRefGoogle Scholar
  58. Strecker U, Hausdorf B, Wilkens H (2012) Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico. Mol Phylogenet Evol 62:62–70PubMedCrossRefGoogle Scholar
  59. Tebbit M (2005) Begonias: cultivation, identification and natural history. Timber PressGoogle Scholar
  60. The UniProt Consortium (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–D219CrossRefGoogle Scholar
  61. Thomas DC, Hughes M, Phutthai T, Rajbhandary S, Rubite R, Ardi WH, Richardson JE (2011) A non-coding plastid DNA phylogeny of Asian Begonia (Begoniaceae): evidence for morphological homoplasy and sectional polyphyly. Mol Phylogenet Evol 60:428–444PubMedCrossRefGoogle Scholar
  62. Thomas DC, Hughes M, Phutthai T, Ardi WH, Rajbhandary S, Rubite R, Twyford AD, Richardson JE (2012) West to east dispersal and subsequent rapid diversification of the mega-diverse genus Begonia (Begoniaceae) in the Malesian archipelago. J Biogeogr 39:98–113CrossRefGoogle Scholar
  63. Vamosi JC, Dickinson TA (2006) Polyploidy and diversification—a phylogenetic investigation in Rosaceae. Int J Plant Sci 167:349–358CrossRefGoogle Scholar
  64. Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117PubMedCrossRefGoogle Scholar
  65. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  66. Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tör A, Zipfel C, de Wit PJ, Jones JD, Tör M, Thomma BP (2008) A genome- wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147:503–517PubMedCrossRefGoogle Scholar
  67. Wernersson R, Pedersen AG (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537–3539PubMedCrossRefGoogle Scholar
  68. Wheat CW (2010) Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica 138:1–19CrossRefGoogle Scholar
  69. Whitehead A, Pilcher W, Champlin D, Nacci D (2012) Common mechanism underlies repeated evolution of extreme pollution tolerance. Proc Biol Sci 279:427–433PubMedCrossRefGoogle Scholar
  70. Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T (2008) An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Mol Ecol Resour 8:725–735PubMedCrossRefGoogle Scholar
  71. Wood TE, Burke JM, Rieseberg LH (2005) Parallel genotypic adaptation: when evolution repeats itself. Genetica 123:157–170PubMedCrossRefGoogle Scholar
  72. Woodard SH, Fischman BJ, Venkat A, Hudson M, Varala K, Cameron SA, Clark AG, Robinson GE (2011) Genes involved in convergent evolution of eusociality in bees. PNAS USA 108:7472–7477PubMedCrossRefGoogle Scholar
  73. Xu Q-l, Dong J-l, Gao N, Ruan M-Y, Jia H-Y, Zhang L, Want C-Y (2011) Transgenic lines of Begonia maculata generated by ectopic expression of PttKN1. Biologia 66:251–257CrossRefGoogle Scholar
  74. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  75. Yu QY, Tong E, Skelton RL, Bowers J (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371PubMedCrossRefGoogle Scholar
  76. Zamocky M, Furtmüller PG, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10:1527–1548PubMedCrossRefGoogle Scholar
  77. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214PubMedCrossRefGoogle Scholar
  78. Zhang W-W, Pan J-S, He H-L, Zhang C, Li Z, Zhao J-L, Yuan X-J, Zhu L-H, Huang S-W, Cai R (2012) Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet 124:249–259PubMedCrossRefGoogle Scholar
  79. Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART (TM) approach for full-length cDNA library construction. Biotechniques 30:892–897PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Adrian Christopher Brennan
    • 1
    • 7
  • Stephen Bridgett
    • 2
  • Mobina Shaukat Ali
    • 3
    • 7
  • Nicola Harrison
    • 3
    • 4
    • 7
  • Andrew Matthews
    • 5
  • Jaume Pellicer
    • 6
  • Alex David Twyford
    • 3
    • 7
  • Catherine Anne Kidner
    • 3
    • 7
  1. 1.Estación Biológica de Doñana (EBD-CSIC)SevillaSpain
  2. 2.GenepoolUniversity of EdinburghEdinburghUK
  3. 3.Royal Botanic Garden EdinburghEdinburghUK
  4. 4.East Malling ResearchKentUK
  5. 5.Queen Mary, University of LondonLondonUK
  6. 6.Royal Botanic Gardens, KewKewUK
  7. 7.Institute of Molecular Plant SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations