Tropical Plant Biology

, Volume 4, Issue 2, pp 134–143 | Cite as

Reactive Oxygen Species and Cellular Interactions Between Mycosphaerella fijiensis and Banana

  • Maria de Jesus B. Cavalcante
  • Jacques Escoute
  • Jean Paul Madeira
  • Rocio E. Romero
  • Michel R. Nicole
  • Luis C. Oliveira
  • Chantal Hamelin
  • Marc Lartaud
  • Jean L. Verdeil
Article

Abstract

Globally, the banana plant (Musa spp) is the fourth most important crop after rice, wheat and corn (based on production in tons). It is cultivated in more than 100 tropical and subtropical countries, mainly by small producers and is a fundamental food source for millions of people. Black leaf streak disease (BLSD), caused by Mycosphaerella fijiensis Morelet (sexual phase) or Paracercospora fijiensis (Morelet) Deighton (asexual phase), is the main disease affecting the world’s banana culture. This disease has a wide geographical distribution accounting for losses exceeding 50% of global banana production. We conducted a comparative histocytological study on the kinetics of the infection process using three banana genotypes with phenotypes that differ in resistance to BLSD: Grand Naine (Susceptible), Pisang Madu (Partially Resistant) and Calcutta 4 (Resistant). Experiments were conducted under controlled conditions with the objective of characterizing the cellular interaction processes between M. fijiensis and Musa acuminata. Conidia germination occurred 24 hours after inoculation. Germination rates were high (97%) and there were no significant differences between the three genotypes (P > 0.147). The Peroxidase enzyme and H2O2 were associated with a hypersensitivity-like reaction in the resistant genotype Calcutta 4, indicating a possible role of the enzyme or its product as defense mechanisms against M. fijiensis in banana plants.

Keywords

Musa acuminata Mycospaherella fijiensis Banana black leaf streak disease (BLSD) Histology Hydrogen peroxide Peroxidase Defence mechanisms 

Notes

Acknowledgements

The authors wish to thank Dr. J. Carlier and his team (CIRAD-BGPI, Montpellier,France) for providing the fungus isolate and the plants used in this study; Dr. F. F. Laranjeira (Phytopathology-Epidemiology from Embrapa Cassava and Tropical Fruits) for the valuable suggestions in the statistical analysis; Drs. M. T. Souza Junior (Embrapa Labex Europe) and G. Kema (Wageningen University) for collaboration in providing the plants. The authors also appreciate Dr. C. Klimas’s (DePaul University) translation assistance.

References

  1. Abadie C, Zapater MF, Pignolet L, Carlier J, Mourichon X (2008) Artificial inoculation on plants and banana leaf pieces with Mycosphaerella spp., responsible for Sigatoka leaf spot diseases = Inoculation artificielle sur plants et tissus de feuille de bananier avec Mycosphaerella spp. responsables de la maladie de Sigatoka. Fruits 5:319–323CrossRefGoogle Scholar
  2. Atkinson MM (1993) Molecular mechanisms of pathogen recognition by plants. Adv Plant Pathol 10:35–59Google Scholar
  3. Beveraggi A (1992) Etude des interactions hôte-parasite chez des bananiers sensibles et résistants inoculé par Cercospora fijiensis responsables de la maladies des raies noires. Thèse de 3ème cycle, Université de Montpellier II, USTLGoogle Scholar
  4. Beveraggi A, Mourichon X, Sallé G (1995) Etude comparée des premieres étapes de l’infection chez les bananiers sensibles et résistants infectés par Cercospora fijiensis (Mycosphaerella fijiensis) agent responsable de la maladies des raies noires. Can J Bot 73:1328–1337CrossRefGoogle Scholar
  5. Bolwell GP, Davies DR, Gerrish C, Auh C-K, Murphy TM (1998) Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. Plant Physiol 116:1379–1385PubMedCrossRefGoogle Scholar
  6. Carlier J, Lebrun MH, Zapater MF, Dubois C, Mourichon X (1996) Genetic structure of the global population of bananas black leaf streak fungus Mycosphaerella fijiensis. Mol Ecol 5:499–510CrossRefGoogle Scholar
  7. Cohen L, Eyal Z (1993) The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici. Plant Pathol 42:737–43CrossRefGoogle Scholar
  8. Davies DR, Bindschedler LV, Strickland TS, Bolwell GP (2006) Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance. J Exp Bot 57:1817–1827PubMedCrossRefGoogle Scholar
  9. Drumm H, Falk H, Moller J, Mohr H (1970) The development of catalase in the mustard seedling. Cytobiologie 2:335–340Google Scholar
  10. El Hadrami A (2000) Caractérisation de la résistance partielle des bananiers à la maladies des raies noires et évaluation de la variabilité de l’agressivité de l’agent causal, Mycosphaerella fijiensis. Thèse d’Université. Faculté Universitaire des Sciences Agronomiques de Genbloux, BelgiqueGoogle Scholar
  11. Eschrich W, Currier HB (1964) Identification of callose by its diachrome and fluorochrome reactions stain. Technology 39:303–307Google Scholar
  12. Fahimi HD (1969) Cytochemical localization of peroxidase activity of catalase in rat hepatic microbodies (peroxisomes) J. Cell Biol 43:275–288CrossRefGoogle Scholar
  13. Fouré E, Mouliom Pefoura A, Mourichon X (1990) Etude de la sensibilité variétale des bananiers et plantain à Mycosphaerella fijiensis Morelet. Au Cameroun. Caracterisation de la resistance au champ de bananiers appartenant à divers groupes génétiques. Fruits 45:339–345Google Scholar
  14. Fullerton RA (1994) Sigatoka leaf diseases. In: Ploetz RC, Zentmyer GA, Nishijima WT, Rohrbach KG, Ohr HD (eds) Compendium of tropial fruit disease. APS, New York, pp 12–13Google Scholar
  15. Harelimana G, Lepoivre P, Jijakli H, Mourichon X (1997) Use of Mycosphaerella fijiensis toxins for the selection of banana cultivars resistant to Black Leaf Streak. Euphytica 96:125–128CrossRefGoogle Scholar
  16. Hayden HL, Carlier J, Aitken EAB (2003) Genetic structure of Mycosphaerella fijiensis populations from Australia, Papua New Guinea and the Pacific Islands. Plant Pathol 52:703–712CrossRefGoogle Scholar
  17. Heath MC (1998) Involvement of reactive oxygen species in the response of resistant (hypersensitive) or susceptible cowpeas to the cowpea rust fungus. New Phytol 138:251–263CrossRefGoogle Scholar
  18. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468PubMedCrossRefGoogle Scholar
  19. Hoss R, Helbig J, Bochow H (2000) Function of host and fungal metabolites in resistance response of banana and plantain in the black sigatoka disease pathosystem (Musa spp.—Mycosphaerella fijiensis). J Phytopathol 148:387–394CrossRefGoogle Scholar
  20. Hückelhoven R, Kogel K-H (2003) Reactive oxygen intermediates in plant microbe interactions: who is who in powdery mildew resistance? Planta 216:891–902PubMedGoogle Scholar
  21. Huitema E, Vleeshouwers VGAA, Francis DM, Kamoun S (2003) Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Mol Plant Pathol 6:487–500CrossRefGoogle Scholar
  22. Jensen W (1962) Botanical histochemistry. Freeman & Company, San FranciscoGoogle Scholar
  23. Jones DR (2000) Introduction to banana, abacá and enset. In: Jones DR (ed) Diseases of banana, abacá and enset. CAB International, Wallingford, pp 1–36Google Scholar
  24. Kiraly L, Barna B, Kiraly Z (2007) Plant resistance to pathogen infection: forms and mechanisms of innate and acquired resistance. J Phytopathol 155:385–396CrossRefGoogle Scholar
  25. Marín DH, Romero RA, Guzmán M, Sutton TB (2003) Black sigatoka: an increasing threat to banana cultivation. Plant Dis 87:208–222CrossRefGoogle Scholar
  26. Mika A, Minibayeva F, Beckett R, Lüthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3:173–193CrossRefGoogle Scholar
  27. Mlícková K, Luhová L, Lebeda A, Mieslerová B, Pec P (2004) Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiol Biochem 42:753–61PubMedCrossRefGoogle Scholar
  28. Mourichon X, Carlier J, Fouré E (1997) Sigatoka leaf spot disease, Musa Disease. fact Sheet, Inibap, Montpellier, France, 8:4pGoogle Scholar
  29. Resende MLV, Salgado SML, Chaves ZM (2003) Especies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatologia Brasileira 28:123–130CrossRefGoogle Scholar
  30. Shetty NP, Kristensen BK, Newman M-A, Møller K, Gregersen PL, Jørgensen HJL (2003) Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiol Mol Plant Pathol 62:333–346CrossRefGoogle Scholar
  31. Shirasu K, Schulze-Lefert P (2000) Regulation of cell death in disease resistance. Plant Mol Biol 44:371–385PubMedCrossRefGoogle Scholar
  32. Silva SO, Souza MT Jr, Alves EJ, Silveira JRS, Lima MB (2001) Banana breeding program at Embrapa. Crop Breed Appl Biotechnol 4:399–436Google Scholar
  33. Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim Pol 54:39–50PubMedGoogle Scholar
  34. Svabova L, Lebeda A (2005) In vitro selection for improved plant resistance to toxin-producing pathogens. J Phytopathol 153:52–64CrossRefGoogle Scholar
  35. Thordal-Christensen H, Zhang Z, Wie Y, Collinge D (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J 11:1187–94CrossRefGoogle Scholar
  36. Valette C, Andary C, Geiger JP, Sarah JL, Nicole M (1998) Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathology 88:1141–1148PubMedCrossRefGoogle Scholar
  37. Wang CF, Huang L, Buchenauer H, Han QM, Zhang HC, Kang ZS (2007) Histochemical studies on the accumulation of reactive oxygen species (O2_ and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 71:230–239CrossRefGoogle Scholar
  38. Yoder OC (1980) Toxins in pathogenesis. Ann Rev Phytopathol 18:103–129CrossRefGoogle Scholar
  39. Zar JH (1999) Biostatistical analysis, 4 edn. New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maria de Jesus B. Cavalcante
    • 2
    • 4
    • 1
  • Jacques Escoute
    • 2
    • 1
  • Jean Paul Madeira
    • 2
    • 1
  • Rocio E. Romero
    • 2
    • 1
  • Michel R. Nicole
    • 3
    • 1
  • Luis C. Oliveira
    • 4
    • 1
  • Chantal Hamelin
    • 2
    • 1
  • Marc Lartaud
    • 2
    • 1
  • Jean L. Verdeil
    • 2
    • 1
  1. 1.Histology and Plant Cell Imaging LaboratoryMontpellierFrance
  2. 2.Centre de Coopération Internationale en Recherche Agronomique pour le Développement Unité Mixte de Recherche Département d’Amélioration des plantes—Plateforme, d’Histocytologie et d’imagerie végétale CIRADMontpellierFrance
  3. 3.Institut de Recherche pour le DéveloppementUnité Mixte de Recherche Résistance des Plantes aux BioagresseursMontpellierFrance
  4. 4.Embrapa AcreRio BrancoBrazil

Personalised recommendations