Tropical Plant Biology

, Volume 4, Issue 2, pp 126–133

AFLP Phylogeny of 36 Erythroxylum Species

Genetic Relationships Among Erythroxylum Species Inferred by AFLP Analysis
  • Stephen D. Emche
  • Dapeng Zhang
  • Melissa B. Islam
  • Bryan A. Bailey
  • Lyndel W. Meinhardt
Article

Abstract

Four taxa of the plant genus Erythroxylum; Erythroxylum coca var. coca (Ecc), Erythroxylum coca var. ipadu (Eci), Erythroxylum novogranatense var. novogranatense (Enn) and Erythroxylum novogranatense var. truxillense (Ent) are cultivated primarily for the illicit extraction and processing of cocaine. Despite their economic and medical importance, the evolutionary history of these species remains unknown in a modern phylogenetic framework. The aims of this study were to: (a) investigate the relationship among the cultivated and a select number of non-cultivated taxa, and (b) test Plowman’s (Journal of Psychodelic Drugs 11:103–117, 1979b) linear progression hypothesis of the cultivated Erythroxylum taxa versus Johnson’s et al. (Annals of Botany 95:601–608, 2005) hypothesis that Ec and En are sister species. AFLP phylogeny was used to compare the relationships among 36 Erythroxylum species (133 accessions) spanning the geographic distribution of the genus. A Maximum Parsimony tree revealed both geographic and taxonomic partitioning into clades representing species from Africa, Asia-Pacific and the New World (Tropical Americas). Ec and En formed distinct clades, indicating they are sister species and a cluster of non-cultivated species were the most closely related to the cultivated species. Multivariate ordination analysis was used to evaluate the relationship between cultivated and non-cultivated Erythroxylum taxa from the Tropical Americas. Our results support the hypothesis that the cultivated species are more closely related to each other than to any other species of Erythroxylum, but refute the hypothesis that Ent (and Enn) descended from Ecc. Instead our data suggest an independent, non-linear evolutionary relationship between Ec and En. Finally, the AFLP analyses identified significantly different genetic groups within Erythroxylum suggesting that the current intrageneric classification of this genus be revised.

Keywords

AFLP Cocaine Erythroxylum Genetic diversity Phylogenetics 

Supplementary material

12042_2011_9070_MOESM1_ESM.psd (17.3 mb)
ESM1(PSD 17716 kb)

References

  1. Bieri S, Brachet A, Veuthey J-L, Christen P (2006) Cocaine distribution in wild Erythroxylum species. J Ethnopharmacol 103:439–447PubMedCrossRefGoogle Scholar
  2. Bohm BA, Ganders FR, Plowman T (1982) Biosystematics and evolution of cultivated coca (Erythroxylaceae). Syst Bot 7:121–133CrossRefGoogle Scholar
  3. Chin YW, Jones WP, Waybright TJ et al (2006) Tropane aromatic ester alkaloids from a large-scale re-collection of Erythroxylum pervillei stem bark obtained in Madagascar. J Nat Prod 69(3):414–417PubMedCrossRefGoogle Scholar
  4. Domínguez CA, Abarca CA, Eguiarte LE, Molina-Freaner F (2005) Local genetic differentiation among populations of the mass-flowering tropical shrub Erythroxylum havanense (Erythroxylaceae). New Phytol 166:663–672PubMedCrossRefGoogle Scholar
  5. Engler A (1964) Syllabus der Pflanzenfamilien, vol. II. Gebruder-Borntraeger, BerlinGoogle Scholar
  6. Evans WC (1981) The comparative phytochemistry of the genus Erythroxylon. J Ethnopharmacol 3:265–277PubMedCrossRefGoogle Scholar
  7. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondria DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  8. Ganders FR (1979) Heterostyly in Erythroxylum coca, (Erythroxylaceae). J Linn Soc Bot 78:11–20CrossRefGoogle Scholar
  9. Gentner WA (1972) The Genus Erythroxylum in Colombia. Cespedesia 1:481–554Google Scholar
  10. Hartwich C (1911) Die Menschlichen Genussmittel. Chr. Herm. Tauchnitz Leipzig, 878ppGoogle Scholar
  11. Hegnauer R (1981) Chemotaxonomy of erythroxylaceae (including some ethnobotanical notes on Old World Species). J Ethnopharmacol 3:279–292PubMedCrossRefGoogle Scholar
  12. Holmstedt B, Jaatmaa E, Leander K, Plowman T (1977) Determination of cocaine in some South American species of Erythroxylum using mass fragmentography. Phytochemistry 16:1753–1755CrossRefGoogle Scholar
  13. Johnson EL, Schmidt WF, Norman HA (1997) Leaf flavonoids as chemotaxonomic markers for two Erythroxylum taxa. Z Naturforsch 52c:577–585Google Scholar
  14. Johnson EL, Schmidt WF, Norman HA (1998) Flavonoids as markers for Erythroxylum taxa: E. coca var. ipadu and E. novogranatense var. truxillense. Biochem Syst Ecol 26:743–759CrossRefGoogle Scholar
  15. Johnson EL, Schmidt WF, Cooper D (2002) Flavonoids as chemotaxonomic markers for cultivated Amazonian coca. Plant Physiol Biochem 40:89–95CrossRefGoogle Scholar
  16. Johnson EL, Schmidt WF, Emche SD, Mossoba MM, Musser SM (2003a) Kaempferol (rhamnosyl) glucoside, a new flavonol from Erythroxylum coca var. ipadu. Biochem Syst Ecol 31:59–67CrossRefGoogle Scholar
  17. Johnson EL, Saunders JA, Mischke S, Helling CS, Emche SD (2003b) Identification of Erythroxylum taxa by AFLP DNA analysis. Phytochemistry 64:187–197PubMedCrossRefGoogle Scholar
  18. Johnson EL, Zhang D, Emche SD (2005) Inter- and intra-specific variation among five Erythroxylum taxa assessed by AFLP. Ann Bot 95:601–608PubMedCrossRefGoogle Scholar
  19. Mortimer WG (1901) History of coca. JH Vail, New YorkGoogle Scholar
  20. Payo-Hill AL, Dominguez RS, Suarez MO et al (2000) Tropane alkaloids from the leaves and stem bark of Erythroxylon alternifolium and Erythroxylon rotundifolium. Phytochemistry 54:927–932PubMedCrossRefGoogle Scholar
  21. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295CrossRefGoogle Scholar
  22. Plowman T, Sheviak C (1975) Erythroxylum coca and its wild relatives: chemotaxonomic, biosystematic and ecological studies. Second semi-annual report. Internal report under USDA contractGoogle Scholar
  23. Plowman T, Sheviak, C (1976) Erythroxylum coca and its wild relatives: chemotaxonomic, biosystematic and ecological studies. Third and fourth semi-annual reports. Internal report under USDA contractGoogle Scholar
  24. Plowman T, Sheviak C (1977) Erythroxylum coca and its wild relatives: chemotaxonomic, biosystematic and ecological studies. Fifth and sixth semi-annual reports. Internal report under USDA contractGoogle Scholar
  25. Plowman T (1979a) The identity of Amazonian and Trujillo coca. Bot Mus Leaflets 27:45–68Google Scholar
  26. Plowman T (1979b) Botanical perspectives on coca. J Psychodelic Drugs 11:103–117Google Scholar
  27. Plowman T (1981) Amazonian coca. J Ethnopharmacol 3:195–225PubMedCrossRefGoogle Scholar
  28. Plowman T (1982) The identification of coca (Erythroxylum species): 1860–1910. Bot J Linn Soc 84:329–353CrossRefGoogle Scholar
  29. Plowman T, Rivier L (1983) Cocaine and cinnamoylcocaine content of Erythroxylum species. Ann Bot 51:641–659Google Scholar
  30. Plowman T (1984) The ethnobotany of coca (Erythroxylum spp., Erythroxylaceae). Adv Econ Bot 1:62–111Google Scholar
  31. Plowman T, Hensold N (2004) Names, types and distribution of neotropical species of Erythroxylum (Erythroxylaceae). Brittonia 56(1):1–53CrossRefGoogle Scholar
  32. Ranker TA, Schnabel AF (1986) Allozymic and morphological evidence for a progenitor-derivative species pair in Camassia (Liliaceae). Syst Bot 11:433–445CrossRefGoogle Scholar
  33. Rohlf FJ (1982) Consensus indices for comparing classifications. Math Biosci 59:131–144CrossRefGoogle Scholar
  34. Rury RP (1981) Systematic anatomy of Erythroxylum P. Browne: Practical and evolutionary implications for the cultivated cocas. J Ethnopharmacol 3:229–263PubMedCrossRefGoogle Scholar
  35. Rury RP (1993) Neotropical Erythroxylum species, localities and living collections targeted for germplasm retrieval. Report to the USDA, ARS. Arthur D. Little, Inc.Google Scholar
  36. Schneider S, Roessli D, Excoffier L (2000) “Arlequin: A software for population genetics data analysis. http://lgb.unige.ch/arlequin/”. Ver2.000 Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva
  37. Schultes RE (1981) Coca in the northwest amazon. J Ethnopharmacol 3:173–194PubMedCrossRefGoogle Scholar
  38. Schulz OE (1907) Erythroxylaceae. In: Engler A (ed) Das Pflanzenreich 4(134): 1–164Google Scholar
  39. Simmons MP, Zhang LB, Webb CT, Müller K (2007) A penalty of using anonymous dominant markers (AFLPs, ISSRs, and RAPDs) for phylogenetic inference. Mol Phylogenet Evol 42:528–542PubMedCrossRefGoogle Scholar
  40. Swofford DL (2002) PAUP Phylogenetic analysis using parsimony (and other methods) Version 4. Sinauer Associates, SunderlandGoogle Scholar
  41. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  42. Zuanazzi JAS, Tremea V, Limberger RP, Sobral M, Henriques AT (2001) Alkaloids of Erythroxylum (Erythroxylaceae) from southern Brazil. Biochem Syst Ecol 29:819–825PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA)  2011

Authors and Affiliations

  • Stephen D. Emche
    • 1
  • Dapeng Zhang
    • 1
  • Melissa B. Islam
    • 2
  • Bryan A. Bailey
    • 1
  • Lyndel W. Meinhardt
    • 1
  1. 1.USDA ARS, Sustainable Perennial Crops LaboratoryBeltsvilleUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations