Tropical Plant Biology

, Volume 3, Issue 3, pp 166–170 | Cite as

Integration of Genetic and Cytological Maps and Development of a Pachytene Chromosome-based Karyotype in Papaya

  • Wenli Zhang
  • Ching Man Wai
  • Ray Ming
  • Qingyi Yu
  • Jiming JiangEmail author


A significant amount of genetic and genomic resources have been developed in papaya (Carica papaya, \( {\hbox{2n = 2}} \times { = 18} \)), including genetic linkage maps consisting of nine major and three minor linkage groups. However, the 12 genetic linkage groups have not been integrated with the nine chromosomes of papaya. Bacterial artificial chromosome (BAC) clones associated with each linkage group were recently isolated. These linkage group-specific BACs were mapped to meiotic pachytene chromosomes of papaya using fluorescence in situ hybridization (FISH). The FISH mapping results integrated the 12 linkage groups into the nine papaya chromosomes. We developed a pachytene chromosome-based high resolution karyotype for the hermaphrodite plant genome of papaya cultivar SunUp. The chromosomal distribution of heterochromatin in the papaya genome is provided in the karyotype with the X chromosome representing the most euchromatic chromosome in the papaya genome. FISH mapping also revealed a significant amplification of sequences related to the 5S ribosomal RNA genes, which was detected in the male-specific region of the Y chromosome, but not in the corresponding region in the X chromosome.


Carica Chromosome map FISH Karyotype 



Bacterial artificial chromosome


4′ 6-diamidino-2-phenylindole


Fluorescence in situ hybridization


Linkage group


Male-specific region of the Y chromosome


Simple sequence repeat



This research was supported by grant DBI-0553417 from the National Science Foundation.


  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218CrossRefGoogle Scholar
  2. Chen CX, Yu QY, Hou SB et al (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in brassicales. Genetics 177:2481–2491CrossRefPubMedGoogle Scholar
  3. Cheng ZK, Buell CR, Wing RA et al (2001a) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141CrossRefPubMedGoogle Scholar
  4. Cheng ZK, Presting GG, Buell CR et al (2001b) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757PubMedGoogle Scholar
  5. Dhar MK, Friebe B, Koul AK et al (2002) Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma 111:332–340CrossRefPubMedGoogle Scholar
  6. Dong F, Song J, Naess SK et al (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007CrossRefGoogle Scholar
  7. Howell EC, Barker GC, Jones GH et al (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234PubMedGoogle Scholar
  8. Jiang JM, Gill BS, Wang GL et al (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491CrossRefPubMedGoogle Scholar
  9. Jo SH, Koo DH, Kim JF et al (2009) Evolution of ribosomal DNA-derived satellite repeat in tomato genome. BMC Plant Biol 9:42CrossRefPubMedGoogle Scholar
  10. Khush GS, Singh RJ, Sur SC et al (1984) Primary trisomics of rice: Origin, morphology, cytology and use in linkage mapping. Genetics 107:141–163PubMedGoogle Scholar
  11. Kim JS, Childs KL, Islam-Faridi MN et al (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45:402–412CrossRefPubMedGoogle Scholar
  12. Koornneef M, Vanderveen JH (1983) Trisomics in Arabidopsis thaliana and the location of linkage groups. Genetica 61:41–46CrossRefGoogle Scholar
  13. Kulikova O, Gualtieri G, Geurts R et al (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58CrossRefPubMedGoogle Scholar
  14. Lim KY, Skalicka K, Koukalova B et al (2004) Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 166:1935–1946CrossRefPubMedGoogle Scholar
  15. Liu ZY, Moore PH, Ma H et al (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352CrossRefPubMedGoogle Scholar
  16. Ma H, Moore PH, Liu ZY et al (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436CrossRefPubMedGoogle Scholar
  17. Macas J, Navraatilovaa A, Meszaaros T (2003) Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes. Chromosoma 112:152–158CrossRefPubMedGoogle Scholar
  18. Ming R, Moore PH, Zee F et al (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102:892–899CrossRefGoogle Scholar
  19. Ming R, Hou SB, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996CrossRefPubMedGoogle Scholar
  20. Ohmido N, Ishimaru A, Kato S et al (2010) Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosome Res 18:287–299CrossRefPubMedGoogle Scholar
  21. Pedrosa A, Sandal N, Stougaard J et al (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672PubMedGoogle Scholar
  22. Ren Y, Zhang ZH, Liu JH et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795CrossRefPubMedGoogle Scholar
  23. Stupar RM, Song JQ, Tek AL et al (2002) Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. Genetics 162:1435–1444PubMedGoogle Scholar
  24. Wai CM, Yu QY, Moore PH et al (2010) Development of chromosome-specific cytogenetic markers and merging of linkage fragments in papaya. Tropical Plant Biol. doi: 10.1007/s12042-010-9054-1
  25. Wang K, Guan B, Guo WZ et al (2008) Completely distinguishing individual a-genome chromosomes and their Karyotyping analysis by multiple bacterial artificial chromosome-fluorescence in situ hybridization. Genetics 178:1117–1122CrossRefPubMedGoogle Scholar
  26. Yu QY, Hou S, Feltus FA et al (2008) Low X/Y divergence in four pairs of papaya sex-liked genes. Plant J 53:124–132CrossRefPubMedGoogle Scholar
  27. Yu QY, Tong ER, Skelton L et al (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371CrossRefPubMedGoogle Scholar
  28. Zhang DF, Yang QY, Bao WD et al (2005) Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics 169:325–335CrossRefPubMedGoogle Scholar
  29. Zhang WL, Wang XE, Yu QY et al (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wenli Zhang
    • 1
  • Ching Man Wai
    • 2
  • Ray Ming
    • 3
  • Qingyi Yu
    • 2
    • 4
  • Jiming Jiang
    • 1
    Email author
  1. 1.Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Hawaii Agriculture Research CenterAieaUSA
  3. 3.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Texas AgriLife Research Center at WeslacoTexas A&M UniversityWeslacoUSA

Personalised recommendations