Tropical Plant Biology

, Volume 3, Issue 2, pp 75–87 | Cite as

The Biotechnology Roadmap for Sugarcane Improvement

  • Carlos T. Hotta
  • Carolina G. Lembke
  • Douglas S. Domingues
  • Edgar A. Ochoa
  • Guilherme M. Q. Cruz
  • Danila M. Melotto-Passarin
  • Thiago G. Marconi
  • Melissa O. Santos
  • Marcelo Mollinari
  • Gabriel R. A. Margarido
  • Augusto César Crivellari
  • Wanderley D. dos Santos
  • Amanda P. de Souza
  • Andrea A. Hoshino
  • Helaine Carrer
  • Anete P. Souza
  • Antônio A. F. Garcia
  • Marcos S. Buckeridge
  • Marcelo Menossi
  • Marie-Anne Van Sluys
  • Glaucia M. SouzaEmail author


Due to the strategic importance of sugarcane to Brazil, FAPESP, the main São Paulo state research funding agency, launched in 2008 the FAPESP Bioenergy Research Program (BIOEN, BIOEN aims to generate new knowledge and human resources for the improvement of the sugarcane and ethanol industry. As part of the BIOEN program, a Workshop on Sugarcane Improvement was held on March 18th and 19th 2009 in São Paulo, Brazil. The aim of the workshop was to explore present and future challenges for sugarcane improvement and its use as a sustainable bioenergy and biomaterial feedstock. The workshop was divided in four sections that represent important challenges for sugarcane improvement: a) gene discovery and sugarcane genomics, b) transgenics and controlled transgene expression, c) sugarcane physiology (photosynthesis, sucrose metabolism, and drought) and d) breeding and statistical genetics. This report summarizes the roadmap for the improvement of sugarcane.


Sugarcane Breeding Transgenics Genome Physiology 



FAPESP bioenergy research program


Expressed sequence tag


The sugarcane EST project


Sugarcane assembled sequences


Bacterial artificial chromosome


Transposable element


NADP+−malic enzyme


NAD+−malic enzyme


Phosphoenolpyruvate carboxykinase


Marker assisted selection


Single nucleotide polymorphism


Next generation sequencing


Quantitative trait loci


  1. Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. TAG Theor Appl Genet Theoretische und angewandte Genetik 110:789–801CrossRefGoogle Scholar
  2. Aitken KS, Jackson PA, McIntyre CL (2007) Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome 50(8):742–756PubMedCrossRefGoogle Scholar
  3. Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA et al (2008) Genetic control of yield related stalk traits in sugarcane. TAG Theor Appl Genet. Theoretische und angewandte Genetik 117(7):1191–1203CrossRefGoogle Scholar
  4. Al-Janabi SM, Parmessur Y, Kross H, Dhayan S, Saumtally S, Ramdoyal K, Autrey LJC, Dookun-Saumtally A (2007) Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Mol Breed 19:1–14CrossRefGoogle Scholar
  5. Araújo PG, Rossi M, de Jesus EM, Saccaro NL Jr, Kajihara D, Massa R, de Felix JM, Drummond RD, Falco MC, Chabregas SM, Ulian EC, Menossi M, Van Sluys MA (2005) Transcriptionally active transposable elements in recent hybrid sugarcane. Plant J 44:707–717PubMedCrossRefGoogle Scholar
  6. Arencibia A, Molina P, de la Riva G, Selman-Houssein G (1995) Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Rep 14:305–309CrossRefGoogle Scholar
  7. Arencibia A, Carmona E, Tellez P, Chan MT, Yu SM, Trujillo L, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222CrossRefGoogle Scholar
  8. Arencibia A, Carmona E, Cornide MT, Castiglione S, O’Relly J, Cinea A, Oramas P, Sala F (1999) Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res 8:349–360CrossRefGoogle Scholar
  9. Asnaghi C, D’Hont A, Glaszmann JC, Rott P (2001) Resistance of sugarcane cultivar R 570 to Puccinia melanocephala isolates from different geographic locations. Plant Dis 85:282–286CrossRefGoogle Scholar
  10. Batley J, Barker G, Sullivan HO, Edwards KJ, Edwards D, Victoria A et al (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data 1. Society 132:84–91Google Scholar
  11. Beetham PR, Kipp PB, Sawycky XL, Arnzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96:8774–8778PubMedCrossRefGoogle Scholar
  12. Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326PubMedCrossRefGoogle Scholar
  13. Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438PubMedCrossRefGoogle Scholar
  14. Botha FC, Sawyer BJB, Birch RG (2001) Sucrose metabolism in the culm of transgenic sugarcane with reduced soluble acid invertase activity. In: Hogarth DM (ed) Proc Int Soc Sugar Cane Technol, Brisbane 24:588–591Google Scholar
  15. Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416CrossRefGoogle Scholar
  16. Braga DPV, Arrigoni EDB, Silva-Filho MC, Ulian EC (2003) Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). J New Seed 5:209–222CrossRefGoogle Scholar
  17. Brumbley SM, Petrasovits LA, Bonaventura PA, O’Shea MJ, Purnell MP, Nielsen LK (2003) Production of polyhydroxyalkanoates in sugarcane. Proc Int Soc Sugar Cane Technol Mol Biol Workshop, Montpellier, France 4:31Google Scholar
  18. Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045PubMedCrossRefGoogle Scholar
  19. Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS et al (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7(4):347–354PubMedCrossRefGoogle Scholar
  20. Calsa T Jr, Figueira A (2007) Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant Mol Biol 63:745–762PubMedCrossRefGoogle Scholar
  21. Camargo SR, Cançado GMA, Ulian EC, Menossi M (2007) Identification of genes responsive to the application of ethanol on sugarcane leaves. Plant Cell Rep 26:2119–2128PubMedCrossRefGoogle Scholar
  22. Carson DL, Botha FC (2000) Preliminary analysis of expressed sequence tags for sugarcane. Crop Sci 40:1769–1779CrossRefGoogle Scholar
  23. Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386PubMedCrossRefGoogle Scholar
  24. Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517PubMedCrossRefGoogle Scholar
  25. Casu RE, Manners JM, Bonnett GD, Jackson PA, McIntyre CL, Dunne R, Chapman SC, Rae AL, Grof CPL (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crops Res 92:137–147CrossRefGoogle Scholar
  26. Chen ZJ, Ni ZF (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28:240–252PubMedCrossRefGoogle Scholar
  27. Christin PA, Salamin N, Savolainen V, Duvall MR, Besnard G (2007) C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr Biol 17:1241–1247PubMedCrossRefGoogle Scholar
  28. da Silva J, Sorrells ME (1996) Linkage analysis in polyploids using molecular markers. In: Jauhar P (ed) Methods of genome analysis in plants: their merits and pitfalls. CRC Press, Boca RatonGoogle Scholar
  29. Daniell H (1999) Environmentally friendly approaches to genetic engineering. In Vitro Cell De Biol Plant 35:361–368CrossRefGoogle Scholar
  30. Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trend Plant Sci 6:219–225CrossRefGoogle Scholar
  31. Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombardi H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistence linked with a RFLP marker in Sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064CrossRefGoogle Scholar
  32. De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74PubMedCrossRefGoogle Scholar
  33. de Souza AP, Gaspar M, da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama MY Jr, dos Santos RTMM, Souza G, Buckeridge MS (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant, Cell and Environment 31:1116–1127PubMedCrossRefGoogle Scholar
  34. D’Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH, examples of sugarcane and banana. Cytogenet Genome Res 109:27–33PubMedCrossRefGoogle Scholar
  35. D’Hont A, Glaszmann JC (2001) Sugarcane genome analysis with molecular markers, a first decade of research. Proc Int Soc Sugar Cane Technol 24:556–559Google Scholar
  36. D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413PubMedCrossRefGoogle Scholar
  37. D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225CrossRefGoogle Scholar
  38. Elliott AR, Bretell RIS, Grof CPL (1998) Agrobacterium-mediatd transformation of sugarcane using GFP as a screenable marker. Aust J Plant Physiol 25:739–743CrossRefGoogle Scholar
  39. Elliott AR, Dugdale B, Bretell RIS, Grof CPL (1999) Green-fluorescent protein facilitates rapid in vivo detction of genetically transformed plant cells. Plant Cell Rep 18:707–714CrossRefGoogle Scholar
  40. Enriquez GA, Trujillo LE, Menendez C, Vazquez RI, Tiel K, Arieta J, Selman G, Hernandez L (2000) Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. In: Arencibia AD (ed) Plant genetic engineering: towards the third millennium. Elsevier Science, Amsterdam pp 76–81CrossRefGoogle Scholar
  41. Enriquez-Obregon GA, Vázquez-Padrón RI, Prieto-Samsonov DL, De La Riva GA, Selman-Houssein G (1998) Herbicide resistant sugarcane (Saccharum officinarum) plants by Agrobacterium-mediated transformation. Planta 206:20–27CrossRefGoogle Scholar
  42. Falco MC, Tulmann Neto AT, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19:1188–1194CrossRefGoogle Scholar
  43. Falco MC, Silva-Filho MC (2003) Expression of soybean proteinase inhibitors intransgenic sugarcane plants: effects on natural defense against Diatrae saccharalis. Plant Physiol Biochem 41:761–766CrossRefGoogle Scholar
  44. Finnegan J, McElroy D (1994) Transgene inactivatin: plants fight back! Nat Biotechnol 12:883–888CrossRefGoogle Scholar
  45. Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Val G (2005) Marker assisted selecion in crop plants. Plant Cell Tissue Organ Cult 82:317–342CrossRefGoogle Scholar
  46. Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374Google Scholar
  47. Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, Da Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. TAG Theor Appl Genet 112:298–314CrossRefGoogle Scholar
  48. Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M, Abouzid A (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45:2060–2067CrossRefGoogle Scholar
  49. Gilbert RA, Glynn NC, Comstock JC, Davis MJ (2009) Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field Crops Res 111:39–46CrossRefGoogle Scholar
  50. Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127PubMedCrossRefGoogle Scholar
  51. Groenewald JH, Groenewald S, Whittaker A, Huckett BI, Botha FC (1995) Molecular agriculture: prospects for production of alternative commodities in sugarcane through genetic engineering. Proc South African Sugar Technol 69:14–20Google Scholar
  52. Ha S, Moore PH, Heinz D, Kato S, Ohmido N, Fukui K (1999) Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor in situ hybridization and imaging methods. Plant Mol Biol 39:1165–1173PubMedCrossRefGoogle Scholar
  53. Hemaprabha G, Govindaraj P, Balasundaram N, Singh NK (2005) Genetic diversity analysis of indian sugarcane breeding pool based on sugarcane specific STMS markers. Sugar Tech 7:9–14CrossRefGoogle Scholar
  54. Hoarau JY, Offman B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97CrossRefGoogle Scholar
  55. Imelfort M, Duran C, Batley J, Edwards D (2009) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol J 7:312–317PubMedCrossRefGoogle Scholar
  56. Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection Of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1198PubMedCrossRefGoogle Scholar
  57. Inman-Bamber NG (2004) Sugarcane water stress criteria for irrigation and drying off. Field Crops Res 89:107–122CrossRefGoogle Scholar
  58. Inman-Bamber NG, Smith DM (2005) Water relations in sugarcane and response to water deficits. Field Crops Res 92:185–202CrossRefGoogle Scholar
  59. Inman-Bamber NG, Muchow RC, Robertson MJ (2002) Dry matter partitioning of sugarcane in Australia and South Africa. Field Crops Res 76:71–84CrossRefGoogle Scholar
  60. Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Jackson J (2008) Increasing sucrose accumulation in sugarcane by manipulating leaf extension and photosynthesis with irrigation. Aust J Agric Res 59:13–26CrossRefGoogle Scholar
  61. Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, Xu J (2009) Source–sink differences in genotypes and water regimes influencing sucrose accumulation in sugarcane stalks. Crop Pasture Sci 60:316–327CrossRefGoogle Scholar
  62. Intergovernmental Panel on Climate Change (2007) Fourth Assessment Report. Cambridge University PressGoogle Scholar
  63. Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290CrossRefGoogle Scholar
  64. Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26(5):581–590PubMedCrossRefGoogle Scholar
  65. Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585PubMedCrossRefGoogle Scholar
  66. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391PubMedCrossRefGoogle Scholar
  67. Joyce A, McQualter RB, Bernard MJ, Smith GR (1998a) Engineering for resistance to SCMV in sugarcane. Acta Hortic 461:385–391Google Scholar
  68. Joyce A, McQualtert RB, Handley JA, Dale JL, Harding RM, Smith GR (1998b) Transgenic sugarcane resistant to sugarcane mosaic virus. Proc Aust Soc Sugar Cane Technol 20:204–210Google Scholar
  69. Kanazin V, Talbert H, See D, Decamp P, Nevo E, Blake T (2002) Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum. Plant Mol Biol 48:529–537PubMedCrossRefGoogle Scholar
  70. Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol 41:345–363CrossRefGoogle Scholar
  71. Legaspi JC, Mirkov TE (2000) Evaluation of transgenic sugarcane against stalkborers. In: Allsopp PG, Suasa-Ard W (eds) Proc Int Soc Sugar Cane Technol. Sugarcane Entomology Workshop, Khon Kaen 4:68–71Google Scholar
  72. Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677CrossRefGoogle Scholar
  73. Lima ML, Garcia AA, Oliveira KM, Matsuoka S, Arizono H, De Souza CL Jr, De Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38PubMedCrossRefGoogle Scholar
  74. Ma H, Albert HH, Paull R, Moore PH (2000) Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Aust J Plant Physiol 27:1021–1030Google Scholar
  75. Ma HM, Schulze S, Lee S, Yang M, Mirkov E, Irvine J, Moore, Paterson A (2004) An EST survey of the sugarcane transcriptome. Theor Appl Genet 108:851–863PubMedCrossRefGoogle Scholar
  76. Maliga P (2004) Plastid transformation in higher plants. Annu Re Plant Biol 55:289–313CrossRefGoogle Scholar
  77. Manickavasagam M, Ganapathi A, Anbazhagan R, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143PubMedCrossRefGoogle Scholar
  78. McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770PubMedCrossRefGoogle Scholar
  79. McCormick AJ, Cramer MD, Watt DA (2008a) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol 165:1817–1829PubMedCrossRefGoogle Scholar
  80. McCormick AJ, Cramer MD, Watt DA (2008b) Changes in photosynthetic rates and gene expression of leaves during a source–sink perturbation in sugarcane. Ann Bot 101:89–102PubMedCrossRefGoogle Scholar
  81. McIntyre CL, Jackson PA (2001) Low level of selfing found in a sample of crosses in Australian sugarcane breeding programs. Euphytica 117:245–249CrossRefGoogle Scholar
  82. McIntyre CL, Whan A, Croft B, Magarey R, Smith GR (2005) Identification and validation of molecular markers associated with Pachymetra root rot and brown rust resistance in sugarcane using map- and association-based approaches. Mol Breed 16:151–161CrossRefGoogle Scholar
  83. McIntyre CL, Jackson M, Cordeiro GM, Amouyal O, Hermann S, Aitken KS, Eliott F, Henry RJ, Casu RE, Bonnett GD (2006) The identification and characterisation of alleles of sucrose phosphate synthase gene family III in sugarcane. Mol Breed 18:39–50CrossRefGoogle Scholar
  84. McQualter RB, Dale JL, Harding RM, McMahon JA, Smith GR (2004a) Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene. Aust J Agric Res 55:139–145CrossRefGoogle Scholar
  85. McQualter RB, Chong BF, Meyer K, Van Dyk DE, O’Shea MG, Walton NJ, Viitanen PV, Brumbley SM (2004b) Initial evaluation of sugarcane as a production platform for a p-hydroxybenzoic acid. Plant Biotechnol J 2:1–13CrossRefGoogle Scholar
  86. Messing J (2009) Synergy of two reference genomes for the grass family. Plant Physiol 149:117–124PubMedCrossRefGoogle Scholar
  87. Molinari HBC, Marur CJ, Daros E, Campos MKF, Carvalho JFRP, Bespalhok Filho JC, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of praline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229CrossRefGoogle Scholar
  88. Moore PH (1999) Progress and development in sugarcane biotechnology. Proc Int Soc Sugar Cane Technol 23:241–258Google Scholar
  89. Mudge SR, Osabe K, Casu RE, Bonnet GD, Manners JM, Birch RG (2009) Efficient silencing of reporter transgenes coupled to known function promoters in sugarcane, a highly polyploidy crop species. Planta 229:549–558PubMedCrossRefGoogle Scholar
  90. Nogueira FTS, Rosa E Jr, Menossi M, Ulian EC, Aruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824PubMedCrossRefGoogle Scholar
  91. Nutt KA, Allsopp PG, McGhie TK, Shepherd KM, Joyce PA (1999) Transgenic sugarcane with increased resistance to canegrubs. In: Conference of the Australian Society of Sugar Cane Technologists, 1999, Townsville. Proceedings... PK Editorial Services, Townsville pp 27–30Google Scholar
  92. Oliveira KM, Pinto LR, Marconi TG, Margarido GR, Pastina MM, Teixeira LHM, Figueira AV, Ulian EC, Garcia AAF, Souza AP (2007) Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed 20:189–208CrossRefGoogle Scholar
  93. Papini-Terzi FS, Rocha FR, Vencio RZ, Oliveira KC, Felix JdeM, Vicentini R, Rocha CdeS, Simoes AC, Ulian EC, di Mauro SM, da Silva AM, Pereira CA, Menossi M, Souza GM (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues DNA. Resistente 12:27–38Google Scholar
  94. Papini-Terzi FS, Rocha FR, Vencio RZ, Felix JM, Branco DS, Waclawovsky AJ, Del Bem LEV, Lembke CG, Costa MDL, Nishiyama MY, Vicentini R, Vincentz MGA, Ulian EC, Menossi M, SOUZA GM (2009) Sugarcane genes associated with sucrose content. BMC Genomics 10:120PubMedCrossRefGoogle Scholar
  95. Paterson AH et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  96. Petrasovits LA, Purnell MP, Nielsen LK, Brumbley SM (2007) Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol J 5:162–172PubMedCrossRefGoogle Scholar
  97. Piperidis N, Jackson PA, D’Hont A, Besse P, Hoarau JY, Courtois B, Aitken KS, McIntyre CL (2008) Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol Breed 21:233–247CrossRefGoogle Scholar
  98. Raboin L, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield MK, Hoarau JY, D’HOnt A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. TAG Theor Appl Genet 112:1382–1391CrossRefGoogle Scholar
  99. Raboin LM, Pauquet J, Butterfield M, D’Hont A, Glaszmann JC (2008) Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane. Theor Appl Genet 116:701–714PubMedCrossRefGoogle Scholar
  100. Ramdoyal K, Badaloo GH (2002) Prebreeding in sugarcane with an emphasis on the programme of the Mauritius Sugar Industry Research Institute. In: Engels JMM, Rao R, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CABI Publishing Group, OxfordGoogle Scholar
  101. Rangel P, Gomez L, Victoria JI, Angel F (2003) Transgenic plants of CC 84–75 resistant to the virus associated with the sugarcane yellow leaf syndrome In: SILVER JUBILEE CONGRESS, Guatemala. Proceedings of International Society of Sugar Cane Technology, Molecular Biology Workshop, Montpellier: Editorial Services, 2003, p 30Google Scholar
  102. Ripol MI, Churchill GA, da Silva JAG, Sorrells M (1999) Statistical aspects of genetic mapping in autopolyploids. Gene 235:31–41PubMedCrossRefGoogle Scholar
  103. Roach BT (1989) Origin and improvement of the genetic base of sugarcane. Proc Aust Soc Sugar Cane Technol 11:34–47Google Scholar
  104. Roberts SE, Grof CPL, Bucheli CS, Robinson SP, Wilson JR (1996) Genetic engineering of sugarcane for low colour raw sugar. In: Wilson JR, Hogarth DM, Campbell JA, Garside AL (eds) Sugarcane: research towards efficient and sustainable production. CSIRO Division of Tropical Crops and Pastures, Brisbane, pp 130–132Google Scholar
  105. Rocha FR et al (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8:71PubMedCrossRefGoogle Scholar
  106. Rosa E Jr, Nogueira FTS, Menossi M, Ulian EC, Arruda P (2005) Identification of methyl jasmonate-responsive genes in sugarcane using cDNA arrays. Braz J Plant Physiol, Brasil 17:173–180Google Scholar
  107. Rossi M, Araújo PG, Van Sluys MA (2001) Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Gen Mol Biol 24:147–154Google Scholar
  108. Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias M, Chen H, Van Sluys MA, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Molec Genet Genomics 269:406–419CrossRefGoogle Scholar
  109. Saccaro NL Jr, Van Sluys MA, de Mello VA, Rossi M (2007) MudrA-like sequences from rice and sugarcane cluster as two bona fide transposon clades and two domesticated transposases. Gene 392:117–125PubMedCrossRefGoogle Scholar
  110. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302PubMedCrossRefGoogle Scholar
  111. Schlögl PS, Nogueira FT, Drummond RD, Felix JM, Rosa VE Jr, Leite A, Ulian EC, Menossi M (2008) Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep 27:335–345PubMedCrossRefGoogle Scholar
  112. Selvi A, Nair N, Balasundaram N, Mohapatra T (2003) Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 403:394–403CrossRefGoogle Scholar
  113. Setamou M, Bernal JS, Legaspi JC, Mirkov TE, Legaspi BC (2002) Evaluation of lectin-expressing transgenic sugarcane against stalkborers (Lepidoptera: Pyralidae): effects on life history parameters. J Econ Entomol 95:469–477PubMedCrossRefGoogle Scholar
  114. Snyman SJ, Baker C, Huckett BI, McFarlane SA, van Antwerpen T, Berry S, Omarjee J, Rs R, Watt DA (2008) South African Sugarcane Research Institute: embracing biotechnology for crop improvement research. Sugar Tech 10:1–13CrossRefGoogle Scholar
  115. Syvänem AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942CrossRefGoogle Scholar
  116. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166PubMedCrossRefGoogle Scholar
  117. Umemoto T, Aoki N, Hongxuan L, Nakamura Y, Inouchi N, Sato Y, Yano M, Hirabayashi H, Maruyama S (2004) Natural variation in rice starch synthase IIa affects enzyme and starch properties. Funct Plant Biol 31:671–684CrossRefGoogle Scholar
  118. Vettore AL et al (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735PubMedCrossRefGoogle Scholar
  119. Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Knight DP, Roberts SE, Robinson SP (2005) Overexpression of polyphenol oxidase in transgenic sugarcane results in darker juice and raw sugar. Crop Sci 45:354–362CrossRefGoogle Scholar
  120. Vu JC, Allen LH Jr (2009) Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. J Plant Physiol 166:107–116PubMedCrossRefGoogle Scholar
  121. Vu JC, Allen LH Jr, Gesch RW (2006) Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Sci 171:123–131CrossRefGoogle Scholar
  122. Wei X, Jackson PA, McIntyre CL, Aitken KS, Croft B (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 114:155–164PubMedCrossRefGoogle Scholar
  123. Wenzel G (2006) Molecular plant breeding: achievements in green biotechnology and future perspectives. Appl Microbiol Biotechnol 70:642–650PubMedCrossRefGoogle Scholar
  124. Wu L, Birch R (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117PubMedCrossRefGoogle Scholar
  125. Yu J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  126. Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289PubMedCrossRefGoogle Scholar
  127. Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Carlos T. Hotta
    • 1
  • Carolina G. Lembke
    • 1
  • Douglas S. Domingues
    • 2
  • Edgar A. Ochoa
    • 2
  • Guilherme M. Q. Cruz
    • 2
  • Danila M. Melotto-Passarin
    • 3
  • Thiago G. Marconi
    • 4
    • 5
  • Melissa O. Santos
    • 4
    • 5
  • Marcelo Mollinari
    • 6
  • Gabriel R. A. Margarido
    • 6
  • Augusto César Crivellari
    • 2
  • Wanderley D. dos Santos
    • 2
  • Amanda P. de Souza
    • 2
  • Andrea A. Hoshino
    • 6
  • Helaine Carrer
    • 3
  • Anete P. Souza
    • 4
    • 5
  • Antônio A. F. Garcia
    • 7
  • Marcos S. Buckeridge
    • 2
  • Marcelo Menossi
    • 6
  • Marie-Anne Van Sluys
    • 2
  • Glaucia M. Souza
    • 1
    Email author
  1. 1.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Botânica, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  3. 3.Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de QueirozUniversidade de São PauloPiracicabaBrazil
  4. 4.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
  5. 5.Centro de Biologia Molecular e Engenharia GenéticaUniversidade Estadual de CampinasCampinasBrazil
  6. 6.Departamento de Genética, Evolução e Bioagentes, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrasil
  7. 7.Departamento de Genética, Escola Superior de Agricultura Luiz de QueirozUniversidade de São PauloPiracicabaBrasil

Personalised recommendations