Tropical Plant Biology

, Volume 2, Issue 2, pp 63–76 | Cite as

Decaf and the Steeplechase Towards Decaffito—the Coffee from Caffeine-Free Arabica Plants

  • Paulo MazzaferaEmail author
  • Thomas W. Baumann
  • Milton Massao Shimizu
  • Maria Bernadete Silvarolla


Unquestionably, the popularity of the coffee beverage relies on its alerting attribute caffeine. However, susceptibilities to this purine alkaloid, quite frequently associated with health concerns, encouraged a significant market for decaffeinated coffee. The beans of Coffea arabica render the best beverage and a decaffeinated coffee has to preserve the desired organoleptic characteristics of this species. Consequently, besides technical removal of caffeine, the endeavors to attain a decaffeinated Arabica coffee range from traditional studies on genetic variability to advanced techniques to produce genetic modified coffee. The aim of this review is to recover part of this subject focusing mainly on the natural genetic variation for caffeine content in Arabica. We also present historical information about caffeine discovery and briefly discuss molecular approaches to reduce caffeine. We introduce here the term decaffito for coffee derived from Arabica plants with beans naturally low in or almost devoid of caffeine. In the near future, coffee drinkers avoiding caffeine will have the choice between basically three Arabica coffees, namely decaffeinated by (a) selection and breeding, (b) genetic modification and (c) industrial extraction. Although only the last decaf coffee is available for the consumers, we believe that the size of the market of each type will occupy in the future depend on the price and health aspects related to the way the decaffeinated coffee beans are obtained.


Caffeine Coffea arabica Coffee consumption Decaffeination Health 



We wish to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for research fellowships (PM), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Consórcio Brasileiro de Pesquisa e Desenvolvimento do Café for research grants.


  1. 1.
    Akaffou DS, Ky CL, Barre P et al (2003) Identification and mapping of a major gene (Ft1) involved in fructification time in the interspecific cross Coffea pseudozanguebariae C. liberica var. Dewevrei: impact on caffeine content and seed weight. Theor Appl Gen 106:1486–1490Google Scholar
  2. 2.
    Almeida JAS, Silvarolla MB, Fazuoli LC et al (2008) Embriogênese somática em genótipos de Coffea arabica L. Coffee Sci 3:143–151Google Scholar
  3. 3.
    Alvarez JH, Cortina HA, Villegas JF (2002) Metodo para evaluar antixenosis at Hypothnemus hampei en cafe, bajo condiciones controladas. Cenicafé 53:49–59Google Scholar
  4. 4.
    Anderson L, Gibbs M (1962) The biosynthesis of caffeine in the coffee plant. J Biol Chem 237:1941–1944PubMedGoogle Scholar
  5. 5.
    Anft B (1937) Friedlieb Ferdinand Runge—sein Leben und sein Werk. Friedrich-Wilhelms-UniversitätGoogle Scholar
  6. 6.
    Angelucci E (1982) Análise química do café. Instituto de Tecnologia de Alimentos, CampinasGoogle Scholar
  7. 7.
    Anthony F, Clifford MN, Noirot M (1993) Biochemical diversity in the genus Coffea L.: chlorogenic acids, caffeine and mozambioside contents. Gen Res Crop Evol 40:61–70CrossRefGoogle Scholar
  8. 8.
    Anthony F, Bertrand B, Quiros O et al (2001) Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers. Euphytica 118:53–65CrossRefGoogle Scholar
  9. 9.
    Anzueto F, Bertrand B, Sarah JL et al (2001) Resistance to Meloidogyne incognita in Ethiopian Coffea arabica accessions. Euphytica 118:1–8CrossRefGoogle Scholar
  10. 10.
    Aranda JV, Louridas AT, Vitullo BB et al (1979) Metabolism of theophylline to caffeine in human fetal liver. Science 206:1319–1321PubMedCrossRefGoogle Scholar
  11. 11.
    Ashihara H, Crozier A (1999) Biosynthesis and catabolism of caffeine in low-caffeine-containing species of Coffea. J Agric Food Chem 47:3425–3431PubMedCrossRefGoogle Scholar
  12. 12.
    Ashihara H, Crozier A (1999) Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv Bot Res 30:117–205CrossRefGoogle Scholar
  13. 13.
    Ashihara H, Crozier A (2001) Caffeine: a well known but little mentioned compound in plant science. Trends Plant Sci 6:407–413PubMedCrossRefGoogle Scholar
  14. 14.
    Ashihara H, Suzuki T (2004) Distribution and biosynthesis of caffeine in plants. Frontiers Biosci 9:1864–1876CrossRefGoogle Scholar
  15. 15.
    Ashihara H, Sano H, Crozier A (2008) Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69:841–856PubMedCrossRefGoogle Scholar
  16. 16.
    Azevedo ABA, Mazzafera P, Mohamed RS et al (2008) Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical carbon dioxide and co-solvents. Braz J Chem Eng 25:543–552CrossRefGoogle Scholar
  17. 17.
    Barre P, Akaffou S, Louarn J et al (1998) Inheritance of caffeine and heteroside contents in an interspecific cross between a cultivated coffee species Coffea liberica var dewevrei and a wild species caffeine-free C. pseudozanguebariae. Theor App Gen 96:306–311CrossRefGoogle Scholar
  18. 18.
    Baumann TW (1987) How microorganisms may help to select coffee beans with desired traits. XII International Conference on Coffee Science, MontreuxGoogle Scholar
  19. 19.
    Baumann TW (2006) Some thoughts on the physiology of caffeine in coffee—and a glimpse of metabolic profiling. Braz J Plant Physiol 18:243–251CrossRefGoogle Scholar
  20. 20.
    Baumann TW, Dupont-Looser E, Wanner H (1978) 7-Methylxanthosine—an intermediate in caffeine biosynthesis. Phytochemistry 17:2075–2076CrossRefGoogle Scholar
  21. 21.
    Baumann TW, Koetz R, Morath P (1983) N-Methyltransferase activities in suspension cultures of Coffea arabica L. Plant Cell Rep 2:33–35Google Scholar
  22. 22.
    Bayer C, Fay MF, De Bruijn AE et al (1999) Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Bot J Linnean Soc 129:267–303Google Scholar
  23. 23.
    Begum B, Hasan CM, Rashid MA (2003) Caffeine from the mature leaves of Coffea bengalensis. Biochem System Ecol 31:1219–1230CrossRefGoogle Scholar
  24. 24.
    Bettencourt AJ, Rodrigues CJ Jr (1988) Principles and practice of coffee breeding for resistance to rust and other diseases. In: Clarke RJ, McRae R (eds) Coffee: agronomy. Elsevier Applied Science, LondonGoogle Scholar
  25. 25.
    Bory C, Baltassat P, Porthault M et al (1979) Metabolism of theophylline to caffeine in premature newborn-infants. J Pediatr 94:988–993PubMedCrossRefGoogle Scholar
  26. 26.
    Bravi F, Bosetti C, Tavani A et al (2007) Coffee drinking and hepatocellular carcinoma risk: a meta analysis. Hepatology 46:430–435PubMedCrossRefGoogle Scholar
  27. 27.
    Buchanan JM, Hartman SC (1959) Enzymatic reactions in the synthesis of purines. Adv Enzymol 21:199–261Google Scholar
  28. 28.
    Bussemas HH, Harsch G, Ettre LS (1994) Friedlieb Ferdinand Runge (1794–1867):“self-grown pictures” as precursors of paper chromatography. Chromatografia 38:243–254CrossRefGoogle Scholar
  29. 29.
    Cadden ISH, Partovi N, Yoshida EM (2007) Review article: possible beneficial effects of coffee on liver disease and function. Alim Pharmacol Ther 26:1–7CrossRefGoogle Scholar
  30. 30.
    Campa C, Doulbeau S, Dussert S et al (2005) Diversity in bean caffeine content among wild Coffea species: evidence of a discontinuous distribution. Food Chem 91:633–637CrossRefGoogle Scholar
  31. 31.
    Carvalho A (1993) Histórico do desenvolvimento do cultivo do café no Brasil. Documentos IAC 34:1–7Google Scholar
  32. 32.
    Carvalho A, Fazuoli LC (1993) Café. In: Furlani AMC, Viégas GP (eds) O Melhoramento de Plantas no Instituto Agronômico, vol 1. Instituto Agronômico, Secretaria da Agricultura de São Paulo, CampinasGoogle Scholar
  33. 33.
    Carvalho A, Monaco LC (1967) Genetic relationships of selected Coffea species. Ciên Cult 19:151–165Google Scholar
  34. 34.
    Carvalho A, Tango JS, Monaco LC (1965) Genetic control of the caffeine content of coffee. Nature 205:314CrossRefGoogle Scholar
  35. 35.
    Carvalho A, Fazuoli LC, Levy FA et al (1983a). Observações sobre característica dos frutos de introduções da Etiópia. X Congresso Brasileiro de Pesquisas Cafeeiras, Poços de Caldas (MG), resumos, pp 90–92Google Scholar
  36. 36.
    Carvalho A, Sondähl MR, Sloman C (1983) Teor de cafeína em seleções de café. X Congresso Brasileiro de Pesquisas Cafeeiras, Poços de CaldasGoogle Scholar
  37. 37.
    Carvalho A, Fazuoli LC, Mazzafera P (1988) Melhoramento do cafeeiro. XIII. Produtividade de populações derivadas da hibridação dos cultivares Laurina e Mundo Novo de C. arabica. Bragantia 47:213–222CrossRefGoogle Scholar
  38. 38.
    Carvalho A, Medina HP, Filho FLC et al (1991) Aspectos genéticos do cafeeiro. Rev bras Genet 14:135–183Google Scholar
  39. 39.
    Castillo-Zapata J, Parra-Hernández J (1973) Exploración en el contenido de cafeína, grasas y sólidos solubles en 113 “introduciones” de cafe. Cenicafé 24:3–22Google Scholar
  40. 40.
    Castle TJ (2002) Decaf dialogue. Tea Coffee Trade J online 176:
  41. 41.
    Chang J, Gotcher S, Gushaw JB (1982) Homogeneous enzyme immunoassay for theophylline in serum and plasma. Clin Chem 28:361–367PubMedGoogle Scholar
  42. 42.
    Charrier A (1978) La structure génétique des caféiers spontanés de la région Malgache (Mascarocoffea). Leurs relations avec les caféiers d’origine africaine (Eucoffea). ORSTOM, ParisGoogle Scholar
  43. 43.
    Charrier A, Berthaud J (1975) Variation de la teneur en caféine dans le genre Coffea. Café Cacao Thé 19:251–264Google Scholar
  44. 44.
    Charrier A, Berthaud J (1985) Botanical classification of coffee. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry and production of beans end beverage. Avi, WestportGoogle Scholar
  45. 45.
    Chen HW, Zenobi R (2007) Direct analysis of living objects by extractive electrospray mass ionization spectrometry. Chimia 61:843–843CrossRefGoogle Scholar
  46. 46.
    Chen HW, Sun YP, Wortmann A et al (2007) Differentiation of maturity and quality of fruit using noninvasive extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Anal Chem 79:1447–1455PubMedCrossRefGoogle Scholar
  47. 47.
    Chevalier A (1947) Les caféiers du globe, fasc. 3: systématique des caféiers et faux-caféiers, maladies et insectes nuisibles. ParisGoogle Scholar
  48. 48.
    Clifford MN, Williams T, Bridson D (1989) Chlorogenic acids and caffeine as possible taxonomic criteria in Coffea and Psilanthus. Phytochemistry 28:829–838CrossRefGoogle Scholar
  49. 49.
    Clifford MN, Gibson CL, Rakotomalala J-J et al (1991) Caffeine from green beans of Mascarocoffea. Phytochemistry 30:4039–4040CrossRefGoogle Scholar
  50. 50.
    Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based from mesofossil and macrofossil evidence from Creataceous deposits. Am J Bot 91:1666–1682CrossRefGoogle Scholar
  51. 51.
    Daly JW (2007) Caffeine analogs: biomedical impact. Cell Mol Life Sci 64:2153–2169PubMedCrossRefGoogle Scholar
  52. 52.
    Davis AP, Govaerts R, Bridson DM et al (2006) AnAn annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot J Linn Soc 152:465–512CrossRefGoogle Scholar
  53. 53.
    de Araujo EF, de Queiroz LP, Machado MA (2003) What is citrus? Taxonomic implications from a study of cp-DNA evolution in the tribe Citreae (Rutaceae subfamily Aurantioideae). Organ Diver Evol 3:55–62CrossRefGoogle Scholar
  54. 54.
    Dórea JG, Costa THM (2005) Is coffee a functional food? Br J Nutr 93:773–782PubMedCrossRefGoogle Scholar
  55. 55.
    Duarte C (1930) Sur leurs teneurs en eau et en caféine des cafés de iles de S. Tomé et du Prince. Anais Inst Sup Agron Portugal 4:20–27Google Scholar
  56. 56.
    Ducruix A, Pascard-Billy C, Hammoniere M et al (1975) X-ray structure of mascaroside, a new bitter glycoside from coffee beans. J Chem Soc, Chem Commun 396Google Scholar
  57. 57.
    Fischer E (1897) Ueber die Constitution des Caffeïns, Xanthins, Hypoxanthins und verwandter Basen. Ber d deutsch chem Gesellschaft 30:549–559CrossRefGoogle Scholar
  58. 58.
    Fischer E, Ach L (1895) Synthese des Caffeïns. Ber d deutsch chem Gesellschaft 28:3135–3143CrossRefGoogle Scholar
  59. 59.
    Fredholm BB (2004) Caffeine as an adenosine receptor antagonist. Eur Neuropsychopharmacol 14:S156–S157CrossRefGoogle Scholar
  60. 60.
    Fredholm BB, Bättig K, Holmén J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133PubMedGoogle Scholar
  61. 61.
    Frischknecht PM, Baumann TW (1980) The pattern of purine alkaloid formation in suspension cultures of Coffea arabica. Planta Medica 40:245–249CrossRefGoogle Scholar
  62. 62.
    Geraets L, Moonen HJJ, Wouters EFM et al (2006) Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations. Biochem Pharmacol 72:902–910PubMedCrossRefGoogle Scholar
  63. 63.
    Geromel C, Ferreira LP, Cavalari AA et al (2006) Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. J Exp Bot 57:3243–3258PubMedCrossRefGoogle Scholar
  64. 64.
    Guerreiro Filho O, Mazzafera P (2003) Caffeine and resistance of coffee to the berry borer Hypothenemus hampei (Coleoptera: Scolytidae). J Agric Food Chem 51:6987–6991PubMedCrossRefGoogle Scholar
  65. 65.
    Gushaw JB, Hu MW, Miller JG et al (1977) Homogeneous enzyme immunoassay for theophylline in serum. Clin Chem 23:1144 (Abstract)Google Scholar
  66. 66.
    Hammer K, Arrowsmith N, Gladis T (2003) Agrobiodiversity with emphasis on plant genetic resources. Naturrwissenschaften 90:241–250CrossRefGoogle Scholar
  67. 67.
    Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22PubMedCrossRefGoogle Scholar
  68. 68.
    Heilmann W (2001) Decaffeination of coffee. In: Clarke RJ, Vitzthum OG (eds) Coffee recent developments. Blackwell Sciences, Oxford, UKGoogle Scholar
  69. 69.
    Hein L, Gatzweiler F (2006) The economic value of coffee (Coffea arabica) genetic resources. Ecol Econ 60:176–185CrossRefGoogle Scholar
  70. 70.
    Helgeson C, Hu MW, K C et al (1983) A homogeneous enzyme-immunoassay for caffeine in serum. Clin Chem 29:1275 (Abstract)Google Scholar
  71. 71.
    Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46:101–123PubMedCrossRefGoogle Scholar
  72. 72.
    Holscher W (2005) Rohkaffeebehandlung im Verbraucherland. In: Rothfos JB, Lange H (eds) Kaffee—Die Zukunft. Behr’s Verlag, HamburgGoogle Scholar
  73. 73.
    Inoue T, Adachi F (1962) Studies on biogenesis of tea components. III. The origin of the methylgroups in caffeine. Chem Pharm Bull 10:1212–1214PubMedGoogle Scholar
  74. 74.
    Jones HC (2003) Brazil decaf market survey unveiled. Tea Coffee Trade J online 177:
  75. 75.
    Kato M, Mizuno K (2004) Caffeine synthase and related methyltransferases in plants. Frontiers Biosci 9:1833–1842CrossRefGoogle Scholar
  76. 76.
    Kato M, Mizuno K, Fujimura T et al (1999) Purification and characterization of caffeine synthase from tea leaves. Plant Physiol 120:579–586PubMedCrossRefGoogle Scholar
  77. 77.
    Kato M, Mizuno K, Crozier A et al (2000) Caffeine synthase gene from tea leaves. Nature 406:956–957PubMedCrossRefGoogle Scholar
  78. 78.
    Katz SN (1985) Decaffeination of coffee. In: Clarke RJ, Macrae R (eds) Coffee, vol 2. Technology, Elsevier Applied Science, LondonGoogle Scholar
  79. 79.
    Kremers RE (1954) Speculation on DPN as a biochemical precursor of caffeine and trigonelline in coffee. J Am Pharm Assoc 43:423–424Google Scholar
  80. 80.
    Krug CA, Mendes JET, Carvalho A (1938) Taxonomia de Coffea arabica L.: descrição de variedades e formas encontradas no Estado de São Paulo. Bol Inst Agronom Campinas 62:1–57Google Scholar
  81. 81.
    Kushalappa AC, Eskes AB (1989) Advances in coffee rust research. Annu Rev Phytopathol 27:503–531CrossRefGoogle Scholar
  82. 82.
    Ky CL, Louarn J, Dussert S et al (2001) Caffeine, trigonelline, chlorogenic acid and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chem 75:223–230CrossRefGoogle Scholar
  83. 83.
    Ladenson RC, Crimmins DL, Landt Y et al (2006) Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem 78:4501–4508PubMedCrossRefGoogle Scholar
  84. 84.
    Larsson SC, Wolk A (2007) Coffee consumption and risk of liver cancer: a meta-analysis. Gastroenterology 132:1740–1745PubMedCrossRefGoogle Scholar
  85. 85.
    Lashermes P, Combes M-C, Robert J et al (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266PubMedCrossRefGoogle Scholar
  86. 86.
    Le Pierres D (1987) Influence des facteurs génétiques sur le contrôle de la teneur en caféine du café. XII Colloquiun Scientifique International sur la Chimie du Café, MontreuxGoogle Scholar
  87. 87.
    Leroy T, Montagnon C, Charrier A et al (1993) Reciprocal recorrent selection applied to Coffea canephora Pierre. I: characterization and evaluation of breeding populations and value of intergroup hybrids. Euphytica 67:113–125CrossRefGoogle Scholar
  88. 88.
    Lin C, Mueller LA, McCarthy J et al (2005) Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Genet 112:114–130PubMedCrossRefGoogle Scholar
  89. 89.
    Looser E, Baumann TW, Wanner H (1974) The biosynthesis of caffeine on the coffee plant. Phytochemistry 13:2515–2518CrossRefGoogle Scholar
  90. 90.
    Love B, Spaner D (2007) Agrobiodiversity: its value, measurement and conservation in the context of sustainable agriculture. J Sustain Agric 31:53–82CrossRefGoogle Scholar
  91. 91.
    Mahé L, Combes M-C, Lashermes P (2007) Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome. Plant Mol Biol 64:699–711PubMedCrossRefGoogle Scholar
  92. 92.
    Mascitelli L, Pezzetta F, Sullivan JL (2008) Putative hepatoprotective effects of coffee. Aliment Pharmacol Ther 27:90–92PubMedCrossRefGoogle Scholar
  93. 93.
    Maurin O, Davis AP, Chester M et al (2007) Towards a phylogeny for Coffea (Rubiaceae): identifying well-supported lineages based on nuclear and plastid DNA sequences. Ann Bot 100:1565–1583PubMedCrossRefGoogle Scholar
  94. 94.
    Mazzafera P (2004) Catabolism of caffeine in plants and microorganisms. Frontiers Biosci 9:1348–1359CrossRefGoogle Scholar
  95. 95.
    Mazzafera P, Carvalho A (1991) A cafeína do café. Documentos IAC 25:1–22Google Scholar
  96. 96.
    Mazzafera P, Carvalho A (1992) Breeding for low seed caffeine content of coffee (Coffea L.) by interspecific hybridization. Euphytica 59:55–60Google Scholar
  97. 97.
    Mazzafera P, Braghini MT, Eskes AB (1985) Indications on the ocurrence of male sterility in Coffea canephora and C. arabica. XI International Conference on Coffee Science, Lomé, TogoGoogle Scholar
  98. 98.
    Mazzafera P, Carvalho A, Fazuoli LC et al (1992) Variabilidade do teor de cafeína em sementes de café. Turrialba 42:231–237Google Scholar
  99. 99.
    Mazzafera P, Crozier A, Sandberg G (1994) Studies on the metabolic control of caffeine turnover in developing endosperms and leaves of Coffea arabica and Coffea dewevrei. J Agric Food Chem 42:1423CrossRefGoogle Scholar
  100. 100.
    Mazzafera P, Wingsle G, Olsson O et al (1994) S-adenosyl-L-methionine:theobromine 1-N-methyltransferase, an enzyme catalyzing the synthesis of caffeine in coffee. Phytochemistry 37:1577–1584CrossRefGoogle Scholar
  101. 101.
    McCarthy AA, McCarthy JG (2007) The structure of two N-methyltransferases from the caffeine biosynthetic pathway. Plant Physiol 144:879–889PubMedCrossRefGoogle Scholar
  102. 102.
    McCarthy AA, Biget L, Lin C et al (2007) Cloning, expression, crystallization and preliminary X-ray analysis of the XMT and DXMT N-methyltransferases from Coffea canephora (robusta). Acta Cryst F63:304–307Google Scholar
  103. 103.
    Medicus L (1875) Zur Constitution der Harnsäuregruppe. Annalen der Pharmacie 175:230–251Google Scholar
  104. 104.
    Medina Filho HP, Carvalho A, Söndahl MR et al (1984) Coffee breeding and related evolutionary aspects. In: Janick J (ed) Plant breeding reviews, vol 2. Avi, WestportGoogle Scholar
  105. 105.
    Montagnon C, Guyot B, Cilas C et al (1998) Genetic parameters of several biochemical compounds from green coffee, Coffea canephora. Plant Breed 117:576–578CrossRefGoogle Scholar
  106. 106.
    Mösli Waldhauser SS, Baumann TW (1996) Compartmentation of caffeine and related purine alkaloids depends exclusively on the physical chemistry of their vacuolar complex formation with chlorogenic acids. Phytochemistry 42:985–996CrossRefGoogle Scholar
  107. 107.
    Mueller LA, Solow TH, Taylor N et al (2005) The SOL genomics network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317PubMedCrossRefGoogle Scholar
  108. 108.
    Nagai C, Rakotomalala JJ, Katahira R et al (2008) Production of a new low-caffeine hybrid coffee and the biochemical mechanism of low caffeine accumulation. Euphytica 164:133–142CrossRefGoogle Scholar
  109. 109.
    Natarajan G, Botica M-L, Thomas R et al (2007) Therapeutic drug monitoring for caffeine in preterm neonates: an unnecessary exercise? Pediatrics 119:936–940PubMedCrossRefGoogle Scholar
  110. 110.
    National_Coffee_Association (2006) U.S. coffee consumption (
  111. 111.
    Negishi O, Ozawa T, Imagawa H (1985) Conversion of xanthosine into caffeine in tea plants. Agric Biol Chem 49:251–253Google Scholar
  112. 112.
    Negishi O, Ozawa T, Imagawa H (1985) Methylation of xanthosine by tea-leaf extracts and caffeine biosynthesis. Agric Biol Chem 49:887–890Google Scholar
  113. 113.
    Negishi O, Ozawa T, Imagawa H (1988) N-methyl nucleosidase from tea leaves. Agric Biol Chem 52:169–175Google Scholar
  114. 114.
    Negishi O, Ozawa T, Imagawa H (1994) Guanosine deaminase and guanine deaminase from tea leaves. Biosci Biotech Biochem 58:1277–1281CrossRefGoogle Scholar
  115. 115.
    Ogawa M, Herai Y, Koizumi N et al (2001) 7-Methylxanthine methyltransferase of coffee plants. J Biol Chem 276:8213–8218PubMedCrossRefGoogle Scholar
  116. 116.
    Ogita S, Uefuji H, Yamaguchi Y et al (2003) Producing decaffeinated coffee plants. Nature 423:823–823PubMedCrossRefGoogle Scholar
  117. 117.
    Ogita S, Uefuji H, Morimoto M et al (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931–941PubMedCrossRefGoogle Scholar
  118. 118.
    Ogita S, Uefuji H, Morimoto M et al (2005) Metabolic engineering of caffeine production. Plant Biotechnol 22:461–468Google Scholar
  119. 119.
    Ogutuga DBA, Northcote DH (1970) Biosynthesis of caffeine in tea callus tissue. Biochem J 117:715–720PubMedGoogle Scholar
  120. 120.
    Oken L (1820) Rezension zu Runges ‘Neueste phytochemische Entdeckungen’. Isis: 334–336Google Scholar
  121. 121.
    Oliveira MPA (2007) Expressão de genes da biossíntese de cafeína em frutos e endospermas de Coffea arabica: sem cafeína. MSc, Instituto Agronômico de Campinas (
  122. 122.
    Ou C-N, Fraeley VL, Ellis JM (1984) Evaluation of the EMIT reagent system for measurement of caffeine with the EMIT lab 5000 system and a centrifugal analyzer. Clin Chem 30:887–889PubMedGoogle Scholar
  123. 123.
    Pacher P, Szabo C (2007) Role of Poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25:235–260PubMedCrossRefGoogle Scholar
  124. 124.
    Patil PS, Mallath MK (2007) Coffee and hepatocellular carcinoma: cause or confounding? Hepatology 46:2046–2047PubMedCrossRefGoogle Scholar
  125. 125.
    Pelletier J (1826) Note sur la caféine, Lue à l’Academie royale de médecine. J Pharmacie 12e Année 5:229–233Google Scholar
  126. 126.
    Pfaff CH, Liebig J (1832) Über die Zusammensetzung des Kaffeins. Annalen der Pharmacie 1:17–20CrossRefGoogle Scholar
  127. 127.
    Preusser E, Serenkov GP (1963) Caffeine biosynthesis in tea leaves. Biokhimiya 28:857–861Google Scholar
  128. 128.
    Prewo R, Guggisberg A, Lorenzi-Riatsch A et al (1990) Crystal structure of mozambioside, a diterpene glycoside of Coffea pseudozanguebariae. Phytochemistry 29:990–992CrossRefGoogle Scholar
  129. 129.
    Priolli RHG, Mazzafera P, Siqueira WJ et al (2008) Caffeine inheritance in interspecific hybrids of Coffea arabica x Coffea canephor (Gentianales, Rubiaceae). Gen Mol Biol 31:498–504Google Scholar
  130. 130.
    Rakotomalala JJR (1992) Diversité biochimique des caféiers: analyse des acides hydroxycinnamiques, bases puriques et diterpènes glycosidiques. Particularités des caféiers sauvages de la région malgache (Mascarocoffea Chev.). Ph.D., Universite Montpellier IIGoogle Scholar
  131. 131.
    Rakotomalala J-JR, Cros E, Clifford MN et al (1992) Caffeine and theobromine in green beans from Mascarocoffea. Phytochemistry 31:1271–1272CrossRefGoogle Scholar
  132. 132.
    Rakotomalala J-JR, Kumamoto T, Aburatani T et al (2004) Caffeine content distribution among Mascarocoffea species in Madagascar. 20th International Conference on Coffee Science, BangaloreGoogle Scholar
  133. 133.
    Ramalakshmi K, Raghavan B (1999) Caffeine in coffee: its removal. Why and how? Crit Rev Food Sci Nutr 39:441–456PubMedCrossRefGoogle Scholar
  134. 134.
    Roberts MF, Waller GR (1979) N-methyltransferases and 7-methyl-N9-nucleoside hydrolase activity in Coffea arabica and the biosynthesis of caffeine. Phytochemistry 18:451–455CrossRefGoogle Scholar
  135. 135.
    Runge FF (1819) De nova methodo veneficium belladonnae, daturae nec non hyoscyami explorandi. Dissertation inaug. Jenae, JenaGoogle Scholar
  136. 136.
    Runge FF (1820a) Anleitung zu einer besseren Zerlegungsweise der Vegetabilien durch Theorie und Versuche. In: Runge FF (eds) Neueste phytochemische Entdeckungen zur Begründung einer wissenschaftlichen Phytochemie, BerlinGoogle Scholar
  137. 137.
    Runge FF (1820b) Über Pflanzenchemie (Fortsetzung). Isis: 329–333Google Scholar
  138. 138.
    Salmona J, Dussert S, Descroix F et al (2008) Deciphering transcroptional networks that govern Coffea arabica seed development using combined cDNA array and real time RT-PCR approaches. Plant Mol Biol 66:105–124PubMedCrossRefGoogle Scholar
  139. 139.
    Scholthof K (2007) The disease triangle: pathogens, the environment and society. Nature Rev Microbiol 5:152–156CrossRefGoogle Scholar
  140. 140.
    Schulthess BH, Baumann TW (1995) Are xanthosine and 7-methylxanthosine caffeine precursors? Phytochemistry 39:1363–1370CrossRefGoogle Scholar
  141. 141.
    Schulthess BH, Baumann TW (1995) Stimulation of caffeine biosynthesis in suspension-cultured coffee cells and the in situ existence of 7-methylxanthosine. Phytochemistry 38:1381–1386CrossRefGoogle Scholar
  142. 142.
    Schulthess BH, Morath P, Baumann TW (1996) Caffeine biosynthesis starts with the metabolically-channelled formation of 7-methyl-XMP—a new hypothesis. Phytochemistry 41:169–175CrossRefGoogle Scholar
  143. 143.
    Shlonsky AK, Klatsky AL, Armstrong MA (2003) Traits of persons who drink decaffeinated coffee. Ann Epidemiol 13:273–279CrossRefGoogle Scholar
  144. 144.
    Silvarolla MB, Mazzafera P, Lima MMA (2000) Caffeine content of Ethiopian Coffea arabica beans. Gen Mol Biol 23:213–215Google Scholar
  145. 145.
    Silvarolla MB, Mazzafera P, Fazuoli LC (2004) A naturally decaffeinated arabica coffee. Nature 429:826–826PubMedCrossRefGoogle Scholar
  146. 146.
    Silvarolla MB, Fazuoli LC, Mazzafera P (2007) A obtenção de um café naturalmente descafeinado. O Agronômico 59:60–62Google Scholar
  147. 147.
    Snyder SH, Katims JJ, Annau Z et al (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci USA 78:3260–3264PubMedCrossRefGoogle Scholar
  148. 148.
    Söndahl MR, Lauritis JA (1992) Coffee. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB International, CambridgeGoogle Scholar
  149. 149.
    Söndahl MR, Nakamura T, Filho HPM et al (1984) Coffee. In: Ammirato PV, Evans DA, Sharp WR, Yamada Y (eds) Handbook of Plant Cell Culture, vol 3. Crop Sciences, Macmillan, New YorkGoogle Scholar
  150. 150.
    Suzuki T, Takahashi E (1975) Biosynthesis of caffeine by tea-leaf extracts. Enzymic formation of theobromine from 7-methylxanthine and of caffeine from theobromine. Biochem J 146:87–96PubMedGoogle Scholar
  151. 151.
    Suzuki T, Takahashi E (1976) Caffeine biosynthesis in Camellia sinensis. Phytochemistry 15:1235–1239CrossRefGoogle Scholar
  152. 152.
    Suzuki T, Waller GR (1984) Biosynthesis and biodegradation of caffeine, theobromine, and theophylline in Coffea arabica L. fruits. J Agric Food Chem 32:845–848CrossRefGoogle Scholar
  153. 153.
    Szabo C, Pacher P, Swanson RA (2006) Novel modulators of poly(ADP-ribose) polymerase. Trends Pharmacol Sci 27(12):626–630PubMedCrossRefGoogle Scholar
  154. 154.
    Taketa ATC, Breitmaier E, Schenkel EP (2004) Triterpenes and triterpenoidal glycosides from the fruits of Ilex prarguariensis (Maté). J Braz Chem Soc 15:205–211CrossRefGoogle Scholar
  155. 155.
    Tang H, Bowers JE, Wang X et al (2008) Synteny and collinearity in plant genomes. Science 320:486–488PubMedCrossRefGoogle Scholar
  156. 156.
    Tango JS, Teixeira GC (1961) Teor de cafeína em progênies de café. Bol Super Serv Café 36:6–10Google Scholar
  157. 157.
    Tanksley SD, McCouch SR (1997) Seed banks and molecular maps unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  158. 158.
    tenKate K, Laird SA (2000) Introduction. In: tenKate K, Laird SA (eds) The commercial use of biodiversity: access to genetic resources and benefit-sharing. Earthscan, LondonGoogle Scholar
  159. 159.
    Usmani OS, Belvisi MG, Patel HJ, Crispino N, Birrell MA, Korbonits M, Korbonits D, Barnes PJ (2004) Theobromine inhibits sensory nerve activation and cough. Faseb J 18:231–247Google Scholar
  160. 160.
    van Dam RM, Hu FB (2005) Coffee consumption and risk of type 2 diabetes. JAMA 294:97–104PubMedCrossRefGoogle Scholar
  161. 161.
    Vitória AP, Mazzafera P (1999) Xanthine degradation and related enzymes activities in leaves and fruits of two Coffea species differing in caffeine catabolism. J Agric Food Chem 47:1851–1855PubMedCrossRefGoogle Scholar
  162. 162.
    Vitzthum OG (1976) Chemie und Bearbeitung des Kaffees. In: Eichler O (ed) Kaffee und Coffein, 2nd edn. Springer, Berlin, pp 3–64Google Scholar
  163. 163.
    Waldhauser SSM, Gillies FM, Crozier A et al (1997) Separation of the N-7 methyltransferase, the key enzyme in caffeine biosynthesis. Phytochemistry 45:1407–1414CrossRefGoogle Scholar
  164. 164.
    Waldhauser SSM, Kretschmar JA, Baumann TW (1997) N-methyltransferase activities in caffeine biosynthesis: biochemical characterization and time-course during leaf development of Coffea arabica. Phytochemistry 44:853–859CrossRefGoogle Scholar
  165. 165.
    Wilbaux R (1938) Recherches sur la préparation du café par voie humide. Serie Technique - INEAC 21:1–45Google Scholar
  166. 166.
    Wu F, Mueller LA, Crouzillat D et al (2006) Combining bioinformatics und phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the Euasterid plant clade. Genetics 174:1407–1420PubMedCrossRefGoogle Scholar
  167. 167.
    Yoneyama N, Morimoto H, Ye C-X et al (2006) Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Mol Gen Genom 275:125–135CrossRefGoogle Scholar
  168. 168.
    Zaprometov MN (1962) Formation of caffeine in tea plant shoots. Biokhimiya 27:679–684Google Scholar
  169. 169.
    Zosel K (1978) Praktische Anwendungen der Stofftrennung mit überkritischen Gasen. Angewandte Chemie 90:748–755CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Paulo Mazzafera
    • 1
    Email author
  • Thomas W. Baumann
    • 2
  • Milton Massao Shimizu
    • 1
  • Maria Bernadete Silvarolla
    • 3
  1. 1.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.FlurlingenSwitzerland
  3. 3.Centro de Café Alcides CarvalhoInstituto Agronômico de CampinasCampinasBrazil

Personalised recommendations