Tropical Plant Biology

, Volume 2, Issue 1, pp 51–62 | Cite as

Duplication and Divergence of Grass Genomes: Integrating the Chloridoids



Expressed Sequence Tags from a variety of plant species have been useful for comparative genomics. The evolution of the Chloridoideae subfamily, previously lacking sequence data, was clarified by analysis of Bermudagrass (Cynodon dactylon) ESTs generated from a normalized cDNA library. Using EST collections, we generated unigene sets and analyzed them to further elucidate the evolutionary history of grass subfamilies. A total of eight grasses (C. dactylon, Sorghum bicolor, Saccharum officinarum, Zea mays, Oryza sativa, Hordeum vulgare, Festuca arundinacea, and Triticum aestivum) in four subfamilies and five tribes were analyzed using two different approaches—synonymous substitution rates (Ks) and phylogenetic trees. Ks distributions of paralogous genes suggested several duplication events in C. dactylon, S. bicolor, H. vulgare, and T. aestivum. Phylogenetic analysis with the unigene sets indicated that the analyzed grasses diverged from a common ancestor after a shared ancient polyploidization (ca. 50.0 ~ 67.8 million years ago). Ks distributions of orthologous genes suggested that the Chloridoideae and Panicoideae subfamilies diverged about 34.6 ~ 38.5 million years ago. With the evidence described in this study, we found traces of genomic changes in some grass subfamilies after the divergence of the PACC and BEP clades as well as divergence of Chloridoideae subfamily.


Cynodon dactylon Bermudagrass Chloridoideae Grass family Synonymous substitution rate Phylogenetic tree Expressed sequence tags 

Supplementary material

12042_2009_9028_MOESM1_ESM.doc (34 kb)
Supplementary Table 1 All possible secondary Ks peaks formed by paralogous pairs for the analyzed grasses. Note that Ks values are converted to time (T = Ks / 2λ) using λ = 6.5 × 10−9 [10]. (DOC 34 kb)
12042_2009_9028_MOESM2_ESM.doc (40 kb)
Supplementary Table 2 Ks values representing speciation events of grass subfamilies by the analysis of orthologous pairs between grasses. Note that Ks values are converted to time (T = Ks / 2λ) using λ = 6.5 × 10−9 [10]. (DOC 40 kb)
12042_2009_9028_MOESM3_ESM.doc (38 kb)
Supplementary Table 3 Comparison of average Ks values for each rice duplication block and its corresponding time in MYA (million years ago). Note that Ks values are converted to time (T = Ks / 2λ) using λ = 6.5 × 10−9 [10]. Ks values with the same letter are not significantly different according to Student-Newman-Keuls (SNK) test (P < 0.01). (DOC 37 kb)
12042_2009_9028_MOESM4_ESM.doc (40 kb)
Supplementary Table 4 Pairwise comparisons of internal tree ratio for all the blocks between each species tested. Each number indicates P-value based on the 99% confidence limit of a binomial distribution (Note that numbers in bold indicate that the frequencies of internal trees for two species are not significantly different at the 99% confident level). (DOC 40 kb)


  1. 1.
    Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  2. 2.
    Birney E, Clamp M, Durbin R (2004) GeneWise and GenomeWise. Genome Res 14:988–995. doi: 10.1101/gr.1865504 PubMedCrossRefGoogle Scholar
  3. 3.
    Blanc G, Wolfe KH (2004) Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes. Plant Cell 16:1667–1678. doi: 10.1105/tpc.021345 PubMedCrossRefGoogle Scholar
  4. 4.
    Boquski MS, Lowe TM, Tolstoshev CM (1993) dbEST–database for “expressed sequence tags”. Nat Genet 3:332–333. doi: 10.1038/ng0893-332 CrossRefGoogle Scholar
  5. 5.
    Bowers JE, Chapman BA, Rong J et al (2003) Unravelling angiosperm genome evolution by phlogenetic analysis of chromosomal duplication events. Nature 422:433–438. doi: 10.1038/nature01521 PubMedCrossRefGoogle Scholar
  6. 6.
    Chapman BA, Bowers JE, Schulze SR et al (2004) A comparative phylogenetic approach for dating whole genome duplication events. Bioinformatics 20:180–185. doi: 10.1093/bioinformatics/bth022 PubMedCrossRefGoogle Scholar
  7. 7.
    Chaw S-M, Chang C-C, Chen H-L et al (2004) Dating the monocot–dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58:424–441. doi: 10.1007/s00239-003-2564-9 PubMedCrossRefGoogle Scholar
  8. 8.
    Gaut B (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28. doi: 10.1046/j.1469-8137.2002.00352.x CrossRefGoogle Scholar
  9. 9.
    Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:3809–6814. doi: 10.1073/pnas.94.13.6809 CrossRefGoogle Scholar
  10. 10.
    Gaut BS, Morton BR, McCaig BC et al (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279. doi: 10.1073/pnas.93.19.10274 PubMedCrossRefGoogle Scholar
  11. 11.
    Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736PubMedGoogle Scholar
  12. 12.
    Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88:373–457. doi: 10.2307/3298585 CrossRefGoogle Scholar
  13. 13.
    Huang S, Sirikhachornkit A, Su X et al (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. Proc Natl Acad Sci USA 99:8133–8138. doi: 10.1073/pnas.072223799 PubMedCrossRefGoogle Scholar
  14. 14.
    Kellogg EA (2000) The grasses: a case study of macroevolution. Annu Rev Ecol Syst 31:217–238. doi: 10.1146/annurev.ecolsys.31.1.217 CrossRefGoogle Scholar
  15. 15.
    Kim C, Jang CS, Kamps TL et al (2008) Transcrioptome analysis of leaf tissue from Cynodon dactylon L. by a normalized cDNA library. Funct Plant Biol 35:585–594. doi: 10.1071/FP08133 CrossRefGoogle Scholar
  16. 16.
    Lee Y, Tasi J, Sunkara S, Karamycheva S, Pertea G, Sultana R, Antonescu V, Chan A, Dheung F, Quackenbush J (2005) The TIGR gene indices: clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Res 33:D71–D74. doi: 10.1093/nar/gki064 PubMedCrossRefGoogle Scholar
  17. 17.
    Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593. doi: 10.1104/pp. 015727 PubMedCrossRefGoogle Scholar
  18. 18.
    Li WH (1997) Molecular evolution. Sinauer, Sunderland, MAGoogle Scholar
  19. 19.
    Liang F, Holt I, Pertea G et al (2000) An optimized protocol for analysis of EST sequences. Nucleic Acids Res 28:3657–3665. doi: 10.1093/nar/28.18.3657 PubMedCrossRefGoogle Scholar
  20. 20.
    Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423. doi: 10.1126/science.264.5157.421 PubMedCrossRefGoogle Scholar
  21. 21.
    Ming R, Liu S-C, Lin Y-R et al (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploidy genomes. Genetics 150:1663–1682PubMedGoogle Scholar
  22. 22.
    Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363. doi: 10.1093/nar/gkh099 PubMedCrossRefGoogle Scholar
  23. 23.
    Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908. doi: 10.1073/pnas.0307901101 PubMedCrossRefGoogle Scholar
  24. 24.
    Pertea G, Huang X, Liang F et al (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652. doi: 10.1093/bioinformatics/btg034 PubMedCrossRefGoogle Scholar
  25. 25.
    Prasad V, Stromberg CAE, Alimohammadian H et al (2005) Dinosaur coprolites and the early evolution of grasses and grazers. Science 310:1177–1180. doi: 10.1126/science.1118806 PubMedCrossRefGoogle Scholar
  26. 26.
    Schlueter JA, Dixon P, Granger C et al (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome Res 47:868–876. doi: 10.1139/g04-047 CrossRefGoogle Scholar
  27. 27.
    Sleper DA (1985) Breeding tall fescue. Plant Breed Rev 3:313–342Google Scholar
  28. 28.
    Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352. doi: 10.1016/S0169-5347(99) 01638-9 PubMedCrossRefGoogle Scholar
  29. 29.
    Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London, UKGoogle Scholar
  30. 30.
    Swigonova Z, Lai J, Ma J et al (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923. doi: 10.1101/gr.2332504 PubMedCrossRefGoogle Scholar
  31. 31.
    Tang H, Bowers JE, Wang X et al (2008) Syntheny and collinearity in plant genomes. Science 320:486–488. doi: 10.1126/science.1153917 PubMedCrossRefGoogle Scholar
  32. 32.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  33. 33.
    Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202. doi: 10.1105/tpc.014019 PubMedCrossRefGoogle Scholar
  34. 34.
    Wang X, Shi X, Hao B et al (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946. doi: 10.1111/j.1469-8137.2004.01293.x PubMedCrossRefGoogle Scholar
  35. 35.
    Wei F, Coe E, Nelson W et al (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123. doi: 10.1371/journal.pgen.0030123 PubMedCrossRefGoogle Scholar
  36. 36.
    White SE, Doebley JF (1999) The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics 153:1455–1462PubMedGoogle Scholar
  37. 37.
    Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341. doi: 10.1038/35072009 PubMedCrossRefGoogle Scholar
  38. 38.
    Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  39. 39.
    Yu J, Wang J, Lin W et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:266–281. doi: 10.1371/journal.pbio.0030038 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Changsoo Kim
    • 1
  • Haibao Tang
    • 1
  • Andrew H. Paterson
    • 1
  1. 1.Plant Genome Mapping LabaratoryUniversity of GeorgiaAthensUSA

Personalised recommendations