Advertisement

Tropical Plant Biology

, Volume 2, Issue 1, pp 13–22 | Cite as

Functional Specialization of Vacuoles in Sugarcane Leaf and Stem

  • Anne L. RaeEmail author
  • Mark A. Jackson
  • Chau H. Nguyen
  • Graham D. Bonnett
Article

Abstract

Plant vacuoles are frequently targeted as a storage site for novel products. We have used environment-sensitive fluorescent dyes and the expression of vacuolar marker proteins to characterize the vacuoles in different organs and cell types of sugarcane. The results demonstrated that the lumen of the vacuole in the parenchyma cells of the stem is acidic (<pH 5) and contains active proteases, characteristic of lytic vacuoles. Western blots and tissue labelling with antibodies to vacuolar H+-ATPase suggest that this proton pump is involved in acidification of the vacuolar lumen. Quantitative real-time PCR was used to show that the expression of vacuolar proteases and a vacuolar sorting receptor is also coordinately regulated. In contrast to the stem parenchyma cells, the cells of sugarcane leaves contain diverse types of vacuoles. The pH of these vacuoles and their capacity to hydrolyze protease substrates varies according to cell type and developmental stage. Sugarcane suspension-cultures contain cells with vacuoles that resemble those of stem parenchyma cells and are thus a useful model system for investigating the properties of the vacuole. Understanding the growth and development of storage capacity will be useful in designing strategies to maximize the production of sucrose or alternative bioproducts.

Keywords

C4 grasses Lytic vacuole Proteases Saccharum Vacuolar development 

Abbreviations

ATP

adenosine triphosphate

BSA

bovine serum albumin

CMAC

7-amino-4-chloromethylcoumarin

EST

expressed sequence tag

GAPDH

glyceraldehyde-6-phosphate dehydrogenase

PAGE

polyacrylamide gel electrophoresis

PIPES

piperazine-1,4-bis(2-ethanesulfonic acid)

PVDF

polyvinylidene fluoride

RT-qPCR

quantitative real time polymerase chain reaction

SDS

sodium dodecyl sulfate

TBS

Tris-buffered saline

TVD

top visible dewlap

UV

ultraviolet

Notes

Acknowledgements

The authors thank Professor Masayoshi Maeshima, Nagoya University, Japan, for the kind gift of antisera. Mark Jackson was supported by a PhD research scholarship and Chau Nguyen by a vacation scholarship from the Cooperative Research Centre for Sugar Industry Innovation through Biotechnology.

References

  1. 1.
    Bassham DC, Raikhel NV (2000) Unique features of the plant vacuolar sorting machinery. Curr Opin Cell Biol 12:491–495. doi: 10.1016/S0955-0674(00)00121-6 PubMedCrossRefGoogle Scholar
  2. 2.
    Bower R, Elliott AR, Potier BAM, Birch RG (1996) High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol Breed 2:239–249. doi: 10.1007/BF00564201 CrossRefGoogle Scholar
  3. 3.
    Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517. doi: 10.1023/B:PLAN.0000038255.96128.41 PubMedCrossRefGoogle Scholar
  4. 4.
    Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207. doi: 10.1104/pp.106.079533 PubMedCrossRefGoogle Scholar
  5. 5.
    Epimashko S, Meckel T, Fischer-Schliebs E, Luttge U, Thiel G (2004) Two functionally different vacuoles for static and dynamic purposes in one plant mesophyll leaf cell. Plant J 37:294–300PubMedGoogle Scholar
  6. 6.
    Flückiger R, De Caroli M, Piro G, Dalessandro G, Neuhaus J-M, Di Sansebastiano GP (2003) Vacuolar system distribution in Arabidopsis tissues, visualized using GFP fusion proteins. J Exp Bot 54:1577–1584. doi: 10.1093/jxb/erg160 PubMedCrossRefGoogle Scholar
  7. 7.
    Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143:78–87. doi: 10.1104/pp.106.089367 PubMedCrossRefGoogle Scholar
  8. 8.
    Gnanasambandam A, Birch RG (2004) Efficient developmental mis-targeting by the sporamin NTPP vacuolar signal to plastids in young leaves of sugarcane and Arabidopsis. Plant Cell Rep 23:435–447. doi: 10.1007/s00299-004-0860-5 PubMedCrossRefGoogle Scholar
  9. 9.
    Hood EE, Love R, Lane J, Bray J, Clough R, Pappu K, Drees C, Hood KR, Yoon S, Ahmad A, Howard JA (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719. doi: 10.1111/j.1467-7652.2007.00275.x PubMedCrossRefGoogle Scholar
  10. 10.
    Iskandar HM, Simpson RS, Casu RE, Bonnett GD, Maclean DJ, Manners JM (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression. Plant Mol Biol Rep 22:325–337. doi: 10.1007/BF02772676 CrossRefGoogle Scholar
  11. 11.
    Jackson MA, Rae AL, Casu RE, Grof CPL, Bonnett GD, Maclean DJ (2007) A novel targeting motif identified in a sugarcane legumain directs green fluorescent proteins into the lytic vacuole. Funct Plant Biol 34:633–644. doi: 10.1071/FP07024 CrossRefGoogle Scholar
  12. 12.
    Jacobsen KR, Fisher DG, Maretzki A, Moore PH (1992) Developmental changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage. Bot Acta 105:70–80Google Scholar
  13. 13.
    Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11:1867–1882PubMedCrossRefGoogle Scholar
  14. 14.
    Jenkins CLD, Snow AJ, Simpson RJ, Higgins TJ, Jacques NA, Pritchard J, Gibson J, Larkin PJ (2002) Fructan formation in transgenic white clover expressing a fructosyltransferase from Streptococcus salivarius. Funct Plant Biol 29:1287–1298. doi: 10.1071/FP02029 CrossRefGoogle Scholar
  15. 15.
    Kadioglu A, Terzi R (2007) A dehydration avoidance mechanism: leaf rolling. Bot Rev 73:290–302. doi: 10.1663/0006-8101(2007)73[290:ADAMLR]2.0.CO;2 CrossRefGoogle Scholar
  16. 16.
    Komor E, Thom M, Maretzki A (1981) The mechanism of sugar uptake by sugarcane suspension cells. Planta 153:181–192. doi: 10.1007/BF00384100 CrossRefGoogle Scholar
  17. 17.
    Lebel EG, Heifetz PB, Ward ER, Uknes SJ (2008) Transgenic plants expressing a cellulose. US patent application 2008/0022425 A1Google Scholar
  18. 18.
    Linnestad C, Doan DNP, Brown RC, Lemmon BE, Meyer DJ, Jung R, Olsen O-A (1998) Nucellain, a barley homolog of the dicot vacuolar-processing protease, is localized in nucellar cell walls. Plant Physiol 118:1169–1180. doi: 10.1104/pp.118.4.1169 PubMedCrossRefGoogle Scholar
  19. 19.
    López-Marqués RL, Schiøtt M, Jakobsen MK, Palmgren MG (2004) Structure, function and regulation of primary H+ and Ca+ pumps. In: Blatt MR (eds) Membrane Transport in Plants. Annual Plant Reviews, vol 15. Blackwell, Oxford UK, pp 72–104Google Scholar
  20. 20.
    Ma H, Albert HH, Paull R, Moore PH (2000) Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Aust J Plant Physiol 27:1021–1030Google Scholar
  21. 21.
    Maeshima M (2001) Tonoplast transporters: Organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497. doi: 10.1146/annurev.arplant.52.1.469 PubMedCrossRefGoogle Scholar
  22. 22.
    Maeshima M, Nakanishi Y (2002) H+-ATPase and H+-PPase in the vacuolar membrane: physiology and molecular biology. In: Rengel Z (eds) Handbook of plant growth: pH as the master variable. Marcel Dekker, New York, pp 23–47Google Scholar
  23. 23.
    Majore I, Wilhelm B, Marten I (2002) Identification of K+ Channels in the plasma membrane of maize subsidiary cells. Plant Cell Physiol 43:844–852. doi: 10.1093/pcp/pcf104 PubMedCrossRefGoogle Scholar
  24. 24.
    Marty F (1999) Plant vacuoles. Plant Cell 11:587–599PubMedCrossRefGoogle Scholar
  25. 25.
    Matsura-Endo C, Maeshima M, Yoshida S (1992) Mechanism of the decline in vacuolar H+-ATPase activity in mung bean hypocotyls during chilling. Plant Physiol 100:718–722CrossRefGoogle Scholar
  26. 26.
    McLaughlin SB, Adams Kszos L (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535. doi: 10.1016/j.biombioe.2004.05.006 CrossRefGoogle Scholar
  27. 27.
    McQualter RB, Fong Chong B, Meyer K, Van Dyk DE, O’Shea MG, Walton NJ, Viitanen PV, Brumbley SM (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3:29–41. doi: 10.1111/j.1467-7652.2004.00095.x PubMedCrossRefGoogle Scholar
  28. 28.
    Moore PH (1995) Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Aust J Plant Physiol 22:661–679CrossRefGoogle Scholar
  29. 29.
    Müntz K, Blattner FR, Shutov AD (2002) Legumains—a family of asparagines-specific cysteine endopeptidases involved in propolypeptide processing and protein breakdown in plants. J Plant Physiol 159:1281–1293. doi: 10.1078/0176-1617-00853 CrossRefGoogle Scholar
  30. 30.
    Paris N, Neuhaus JM (2002) BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50:903–914. doi: 10.1023/A:1021205715324 PubMedCrossRefGoogle Scholar
  31. 31.
    Park JH, Oufattole M, Rogers JC (2007) Golgi-mediated vacuolar sorting in plant cells: RMR proteins are sorting receptors for the protein aggregation/membrane internalization pathway. Plant Sci 172:728–745. doi: 10.1016/j.plantsci.2006.12.008 CrossRefGoogle Scholar
  32. 32.
    Rae AL, Bonnett GD, Karno (2006) Understanding stem development and sucrose accumulation to increase CCS. In Hogarth DM (ed) Proceedings of the 28th Annual Conference of the Australian Society for Sugar Cane Technologists, Brisbane 2006Google Scholar
  33. 33.
    Rae AL, Perroux J, Grof CPL (2005) Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. Planta 220:817–825. doi: 10.1007/s00425-004-1399-y PubMedCrossRefGoogle Scholar
  34. 34.
    Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34:D270–D272. doi: 10.1093/nar/gkj089 PubMedCrossRefGoogle Scholar
  35. 35.
    Reinders A, Sivitz AB, Starker CG, Gantt JS, Ward JM (2008) Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Mol Biol 68:289–299. doi: 10.1007/s11103-008-9370-0 PubMedCrossRefGoogle Scholar
  36. 36.
    Rossouw D, Bosch S, Kossmann J, Botha FC, Groenewald J-H (2007) Downregulation of neutral invertase activity in sugarcane cell suspension cultures leads to a reduction in respiration and growth and an increase in sucrose accumulation. Funct Plant Biol 34:490–498. doi: 10.1071/FP06214 CrossRefGoogle Scholar
  37. 37.
    Runeberg-Ross P, Törmäkangas K, Östman A (1991) Primary structure of a barley-grain aspartic proteinase: a plant aspartic proteinase resembling mammalian cathepsin D. Eur J Biochem 202:1021–1027. doi: 10.1111/j.1432-1033.1991.tb16465.x CrossRefGoogle Scholar
  38. 38.
    Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13:3259–3270. doi: 10.1101/gad.13.24.3259 PubMedCrossRefGoogle Scholar
  39. 39.
    Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443. doi: 10.1038/nrg2336 PubMedCrossRefGoogle Scholar
  40. 40.
    Streatfield SJ, Lane JR, Brooks CA, Barker DK, Poage ML, Mayor JM, Lamphear BJ, Drees CF, Jilka JM, Hood EA, Howard JA (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815. doi: 10.1016/S0264-410X(02)00605-9 PubMedCrossRefGoogle Scholar
  41. 41.
    Swanson SJ, Bethke PC, Jones RL (1998) Barley aleurone cells contain two types of vacuoles: Characterization of lytic organelles by use of fluorescent probes. Plant Cell 10:685–698PubMedCrossRefGoogle Scholar
  42. 42.
    Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14:167–178. doi: 10.1007/s11248-004-5415-6 PubMedCrossRefGoogle Scholar
  43. 43.
    Wei S, Marton I, Dekel M, Shalitin D, Lewinsohn E, Bravdo BA, Shoseyov O (2004) Manipulating volatile emission in tobacco leaves by expressing Aspergillus niger beta-glucosidase in different subcellular compartments. Plant Biotechnol J 2:341–350. doi: 10.1111/j.1467-7652.2004.00077.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anne L. Rae
    • 1
    • 2
    Email author
  • Mark A. Jackson
    • 1
    • 2
    • 3
  • Chau H. Nguyen
    • 1
    • 2
    • 4
  • Graham D. Bonnett
    • 1
    • 2
  1. 1.Cooperative Research Centre for Sugar Industry Innovation through BiotechnologyUniversity of QueenslandBrisbaneAustralia
  2. 2.CSIRO Plant IndustryQueensland Bioscience PrecinctBrisbaneAustralia
  3. 3.School of Integrative BiologyUniversity of QueenslandBrisbaneAustralia
  4. 4.Department of Biochemistry and Molecular Biology, School of Biomedical SciencesMonash UniversityClaytonAustralia

Personalised recommendations