Skip to main content
Log in

Introgression and genetic mapping of leaf rust and stripe rust resistance in Aegilops triuncialis

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The growing and cultivating resistant wheat crop varieties is important to meet the demands of the growing population and minimizing the yield losses due to foliar diseases. More important is the identification of novel resistance sources and transfer of resistance in ready to use form. In the current study, leaf rust (LR) and stripe rust (YR) resistant tetraploid nonprogenitors of wheat Aegilops triuncialis (UtUtCtCt) acc pau 3462 was crossed and backcrossed susceptible cultivar WL711(NN) by inducing homeologous pairing using CS ph1. Recurrent parent type plants were selected in subsequent generation with resistance to LR and YR and BC2F7 introgression line (2n=42) named ILtri have been developed. To understand the nature and inheritance of LR and YR resistance genes and to map their genomic location, F2 and F2:3 mapping populations were developed by crossing ILtri with WL711(NN). In F2 and F2:3, the seedlings and adult plants segregated into 3R:1S and 1HR:2Seg:1HS ratios, respectively for both LR and YR, indicating inheritance of single dominant all stage resistance gene working against both the rusts. These genes were temporary designated as Lrtri and Yrtri and were inherited independently. Molecular mapping of 614 SSR markers mapped the Lrtri at a distance of 11.2 cM from SSR marker Xwmc606.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aboukhaddour R., Fetch T., McCallum B. D., Harding M. W., Beres B. L. and Graf R. J. 2020 Wheat diseases on the prairies: a Canadian story. Plant Pathol. 69, 1–15.

    Article  Google Scholar 

  • Aghaee-Sarbarzeh M., Singh H. and Dhaliwal H. S. 2001 A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breed. 120, 259–261.

    Article  CAS  Google Scholar 

  • Andre M. F. 1998 A cereal cyst nematode (Heterodera avenae Woll.) resistance gene transferred from Aegilops triuncialis to hexaploid wheat. Theor. Appl. Genet. 96, 1135–1140.

    Article  Google Scholar 

  • Anikster Y., Bushnell W. R., Eilam T., Manisterski J. and Roelfs A. P. 1997 Puccinia recondita causing leaf rust on cultivated wheats, wild wheats and rye. Can. J. Bot. 75, 2082–2096.

    Article  Google Scholar 

  • Arrigo N., Guadagnuolo R., Lappe S., Pasche S., Parisod C. and Felber F. 2011 Gene flow between wheat and wild relatives: empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis. Evol. Appl. 4, 685–695.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai D., Scoles G. J. and Knott D. R. 1994 Transfer of leaf rust and stem rust resistance genes from Triticum triaristatum to durum and bread wheats and their molecular cytogenetic localization. Genetics 37, 410–418.

    CAS  Google Scholar 

  • Bansal M., Kaur S., Dhaliwal H. S., Bains N. S., Bariana H. S., Chhuneja P. and Bansal U. K. 2017 Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol. 66, 38–44.

    Article  CAS  Google Scholar 

  • Beddow J. M., Pardey P. G., Chai Y., Hurley T. M., Kriticos D. J., Braun H. J. et al. 2015 Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 1, 1–5.

    Article  Google Scholar 

  • Bhardwaj S. C. 2011 Strategic centres 100 years of Wheat Research in India - A saga of distinguished achievements (ed. Singh S. S, Sharma R. K., Singh Gyanender, Tyagi B.S. and Saharan M. S.), pp. 243–262. Directorate of Wheat Research (ICAR), Karnal.

  • Bharadwaj P., Fenske J., Kala N. and Mirza R. A. 2020 The Green revolution and infant mortality in India. J. Heal. Econ. 71, 102314.

  • Bolton M. D., Kolmer J. A. and Garvin D. F. 2008 Wheat leaf rust caused by Puccinia triticina. Mol. Plant Pathol. 9, 563–575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brink R. A. and Cooper D. C. 1940 Double fertilization and development of the seed in angiosperms. Bot. Gaz. 102, 1–25.

    Article  Google Scholar 

  • Butler D. and Spencer N. 2010 The growing problem. Nature 466, 546–547.

    Article  Google Scholar 

  • Chaves M. S., Martinelli J. A., Wesp-guterres C., André F., Graichen S., Brammer S. P. et al. 2013 The importance for food security of maintaining rust resistance in wheat. Food Secur. 5, 157–176.

    Article  Google Scholar 

  • Chen P., Tsujimoto H. and Gill B. 1994 Transfer of PhI genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor. Appl. Genet. 88, 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Chen W., Wellings C., Chen X., Kang Z. and Liu T. 2014 Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant. Pathol. 15, 433–446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz C. D. 2016 The 2NS Translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci. 56, 990–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhuneja P., Kaur S., Goel R. K., Aghaee-Sarbarzeh M. and Dhaliwal H. S. 2007 Introgression of leaf rust and stripe rust resistance genes from Aegilops umbellulata to hexaploid wheat through induced homoeologous pairing. Wheat Prod. Stress Environ. 2, 83–90.

    Article  Google Scholar 

  • Dhaliwal H. S., Harjit-Singh Gupta, S., Bagga P. S. and Gill K. S. 1991 Evaluation of Aegilops and wild Triticum species for resistance to leaf rust (Puccinia recondita f. sp. tritici) of wheat. Int. J. Trop. Agric. 9, 118–121.

    Google Scholar 

  • Dubcovsky J., Lukaszewski A. J., Echaide M., Antonelli E. F. and Porter D. R. 1998 Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci. 38, 1655–1660.

    Article  CAS  Google Scholar 

  • Endo T. R. 1978 On the Aegilops chromosomes having gametocidal action on common wheat. Proc. 5th Int. Wheat Genet. Symp., New Delhi, India. Ind. Soc. Genet. Plant Breed. 1, 306–314.

    Google Scholar 

  • Endo T. R. and Gill B. S. 1996 The deletion stocks of common wheat. J. Hered. 87, 295–307.

    Article  CAS  Google Scholar 

  • Endo T. R. and Tsunewaki K. 1975 Sterility of common wheat with Aegilops triuncialis cytoplasm. J. Hered. 66, 13–18.

    Article  Google Scholar 

  • Ghazvini H., Hiebert C. W., Zegeye T. and Fetch T. 2012 Inheritance of stem rust resistance derived from Aegilops triuncialis in wheat line Tr129. Can. J. Plant Sci. 92, 1037–1041.

    Article  Google Scholar 

  • Gill B. S. and Raupp W. J. 1987 Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci. 27, 445.

    Article  Google Scholar 

  • Gomez M. 2018 A new Hessian fly resistance gene (H 30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor. Appl. Genet. 106, 1248–1255.

    Google Scholar 

  • Gupta S. K., Charpe A., Koul S., Haque Q. M. R. and Prabhu K. V. 2006 Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica 150, 233–240.

  • Herrera-Foessel S. A., Singh R. P., Huerta-Espino J., Rosewarne G. M., Periyannan S. K., Viccars L. et al. 2012 Lr68: A new gene conferring slow rusting resistance to leaf rust in wheat. Theor. Appl. Genet. 124, 1475–1486.

  • Herrera-Foessel S. A., Huerta-Espino J., Calvo-Salazar V., Lan C. X. and Singh R. P. 2014 Lr72 confers resistance to leaf rust in durum wheat cultivar atil C2000. Plant. Dis. 98, 631–635.

  • Huerta-Espino J., Singh R. P., Germán S., McCallum B. D., Park R. F., Chen W. Q. et al. 2011 Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179, 143–160.

    Article  Google Scholar 

  • Hussien T., Bowden R. L., Gill B. S. and Cox T. S. 1997 Chromosome location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat. Crop Sci. 37, 1764–1766.

  • Igrejas G. and Branlard G. 2020 The importance of wheat. In Wheat quality for improving processing and human health (ed. Igrejas G., Ikeda T. and Guzmán C.). Springer. Switzerland.

  • Kamboj R., Sharma S., Kumar R., Sharma P. and Kumar V. 2020 Introgression of powdery mildew resistance from Aegilops triuncialis into wheat through induced homeologous pairing. J. Plant Biochem. Biotechnol. 29, 418–426.

  • Kaur S., Jindal S., Kaur M. and Chhuneja P. 2018 Utilization of wild species for wheat improvement using genomic approaches. In Biotechnologies of crop improvement (ed. Gosal and Wani), 3, pp. 105–150. https://www.springer.com/us.

  • Kerber E. R. and Dyck P. L. 1969 Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 11, 639–647.

  • Kishii M. 2019 An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 10, 585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolmer J. A. 1996 Genetics of resistance to wheat leaf rust. Annu. Rev. Phytopathol. 34, 435-455.

    Article  CAS  PubMed  Google Scholar 

  • Kolmer J. A. 2005 Tracking wheat rust on a continental scale. Curr. Opin. Plant Biol. 8, 441–449.

    Article  PubMed  Google Scholar 

  • Kuraparthy V., Chhuneja P., Dhaliwal H. S., Kaur S., Bowden R. L. and Gill B. S. 2007a Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor. Appl. Genet. 114, 379–1389.

    Article  Google Scholar 

  • Kuraparthy V., Sood S., Chhuneja P., Dhaliwal H. S., Kaur S., Bowden R. L. and Gill B. S. 2007b A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci. 10, 1995–2003.

    Article  CAS  Google Scholar 

  • Lagudah E. S. 2011 Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179, 81–91.

  • Li Y., Niu Y. C. and Chen X. M. 2009 Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers. Theor. Appl. Genet. 118, 339–346.

  • Li Z. F., Zheng T. C., He Z. H., Li G. Q., Xu S. C., Li X. P. et al. 2006 Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor. Appl. Genet. 112, 1098–1103.

  • Line R. F. 2002 Stripe rust of wheat and barley in North America: a retrospective historical review. Annu. Rev. Phytopathol. 40, 75–118.

    Article  CAS  PubMed  Google Scholar 

  • Liu W. X., Jin Y., Rouse M., Friebe B., Gill B. and Pumphrey M. O. 2011 Development and characterization of wheat- Ae.searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor. Appl. Genet. 122, 1537.

  • Lupton F. G. H. and Macer R. C. F. 1962 Inheritance of resistance to yellow rust (Puccinia glumarum Erikss., and Henn.) in seven varieties of wheat. Trans. Br. Mycol. Soc. 45, 21–45.

  • Macer R. C. F. 1966 The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In Proceedings of the 2nd International Wheat Genetics Symposium, pp. 19–24. Lund, Sweden.

  • Mago R., Zhang P., Bariana H. S., Verlin D. C., Bansal U. K., Ellis J. G. and Dundas I. S. 2009 Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor. Appl. Genet. 119, 1441–1450.

  • Mago R., Verlin D., Zhang P., Ellis J., Hoxha S. and Dundas I. 2013 Development of wheat – Aegilops speltoides recombinants and simple PCR–based markers for Sr32 and a new stem rust resistance gene on the 2S # 1 chromosome. Theor. Appl. Genet. 126, 2943–2955.

    Article  CAS  PubMed  Google Scholar 

  • Mahmud H. 2019 Wheat blast in Bangladesh threatening South Asia wheat production. Sci. Microbiol. 2, 8–9.

    Google Scholar 

  • Marais G. F., Pretorius Z. A., Marais A. S. and Wellings C. R. 2003 Transfer of rust resistance genes from Triticum species to common wheat. S. Afr. J. Plant Soil 20, 193–198.

    Article  CAS  Google Scholar 

  • McIntosh R. A. 1995 Wheat rusts: an atlas of resistance genes (ed. McIntosh R. A., Wellings C. R. and Park R. F.), p. 200. CSIRO Publishing, East Melbourne.

  • McIntosh R. A., Wellings C. R. and Park R. F. 1995 Wheat rusts: an atlas of resistance genes. CSIRO, Melbourne.

  • McIntosh R. A., Devos K. M., Dubcovsky J. and Rogers W. J. 2004 Catalogue of gene symbols for wheat: 2004 supplement. Ann. Wheat Newslett. 50, 286–313.

  • McIntosh J. R., O’Toole E., Zhudenkov K., Morphew M., Schwartz C., Ataullakhanov F. I. and Grishchuk E. L. 2013 Conserved and divergent features of kinetochores and spindle microtubule ends from five species. J. Cell Biol. 200, 459–474.

  • Michelmore R. W., Paran I. and Kesseli R. V. 1991 Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88, 9828–9832.

    Article  CAS  PubMed  Google Scholar 

  • Murai K. and Tsunewaki K. 1986 Molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. Iv. ctDNA variation in Ae. triuncialis. Heredity (Edinb) 57, 335–339.

    Article  CAS  Google Scholar 

  • Nagarajan S. and Singh B. 1997 Wheat: India and international collaboration. In Wheat: prospects for global improvement (ed. Braun H. J., Altay F., Kronstad W. E., Beniwal S. P. S. and McNab A.), pp. 533–537, vol 6. Springer, Dordrecht.

  • Narang D., Kaur S., Steuernagel B., Ghosh S., Dhillon R., Bansal M. et al. 2019 Fine mapping of Aegilops peregrina co-segregating leaf and stripe rust resistance genes to distal-most end of 5DS. Theor. Appl. Genet. 132, 1473–1485.

    Article  CAS  PubMed  Google Scholar 

  • Neu C., Stein N. and Keller B. 2002 Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45, 737–744.

  • Niu Z., Chao S., Cai X., Whetten R. B., Breiland M., Cowger C. et al. 2018 Molecular and cytogenetic characterization of six wheat-Aegilops markgrafii disomic addition lines and their resistance to rusts and powdery mildew. Front. Plant Sci. 871, 1–10.

    Google Scholar 

  • Pannu P. P. S., Kumar S., Mohan C., Meeta M., Bhardwaj S. C., Kaur H. and Singh G. 2014 Present scenario of yellow rust of wheat in Punjab and its management. J. Res. Punjab Agric. Univ. 51, 278–282.

    Google Scholar 

  • Peterson R. F., Campbell A. B. and Hannah A. E. 1948 A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Can. J. Res. Sect. C 26, 496–500.

    Article  Google Scholar 

  • Prasad P., Bhardwaj S. C., Gangwar O. P., Kumar S., Khan H., Kumar S. et al. 2017 Population differentiation of wheat leaf rust fungus Puccinia triticina in South Asia. Curr. Sci. 112, 2073–2083.

  • Procunier J. D., Townley-Smith T. F., Fox S., Prashar S., Gray M., Kim W. K. et al. 1995 PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). J. Genet. Breed. 49, 87–91.

    CAS  Google Scholar 

  • Qureshi N., Bariana H., Kumran V. V., Muruga S., Forrest K. L., Hayden M. J. and Bansal U. 2018 A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor. Appl. Genet. 131, 1091–1098.

  • Rahmatov M. 2013 Sources of resistance to yellow rust and stem rust in different wheat-alien introgressions. Introductory paper at the Faculty of Landscape Planning, Horticulture and Agricultural Science, Swedish Agricultural University.

  • Rajaram S. and Dubin H. J. 2019 Plant diseases, global food security and the role of R. Glenn Anderson. Can. J. Plant Pathol. 41, 1–7.

    Google Scholar 

  • Randhawa M. S., Lan C., Basnet B. R., Bhavani S., Huerta-espino J., Kerrie L. et al. 2018 Interactions among genes Sr2 / Yr30, Lr34 / Yr18 / Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L .) line ‘ Arula ’. Aus. J. Crop Sci. 12, 1023–1033.

    Article  CAS  Google Scholar 

  • Ren R. S., Wang M. N., Chen X. M., and Zhang Z. J. 2012 Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor. Appl. Genet. 125, 847–857.

  • Roder M. S., Plaschke S. U., Konig A. B., Sorrells M. E., Tanksley S. D. and Ganal W. M. 1995 Abundance, variability and chromosomal location of microsatellite in wheat. Mol. Gen. Genet. 246, 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Röder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P. and Ganal M. W. 1998 A microsatellite map of wheat. Genetics 149, 2007–2023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roelfs A. P., Singh R. P. and Saari E. E. 1992 Rust diseases of wheat:concepts and methods of disease management, pp. 81. CIMMYT, Mexico.

  • Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A. and Allard R. W. 1984 Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014–8018.

    Article  CAS  PubMed  Google Scholar 

  • Sawhney R. N., Sharma J. B. and Sharma D. N. 1992 Genetic diversity for adult plant resistance to leaf rust (Puccinia recondita) in nea risogenic lines and in Indian wheats. Pl. Breed. 109, 248–254.

  • Shiferaw B., Smale M., Braun H. J., Duveiller E., Reynolds M. and Muricho G. 2013 Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 5, 291–317.

    Article  Google Scholar 

  • Singh H., Kaur J., Bala R., Srivastava P. and Bains N. S. 2020 Virulence and genetic diversity of Puccinia striiformis f. sp. tritici isolates in sub-mountainous area of Punjab, India. Phytoparasitica 48, 383–395.

    Article  CAS  Google Scholar 

  • Somers D. J., Isaac P. and Edwards K. 2004 A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  • Stakman E. C. and Piemeisel F. J. 1917 Biologic forms of Puccinia graminis on cereals and grasses. J. Agric. Res. 10, 429–495.

    Google Scholar 

  • Stakman E. C., Stewart D. M. and Loegering W. Q. 1962 Identification of physiologic races of Puccinia graminis var. tritici. United States Department of Agricultural Publications, Washington.

  • Steel R. G. D. and Torrie J. H. 1960 Principles and procedures of statistics (with special reference to the Biological Sciences). McGraw-Hill Book, New York.

  • Tar M., Purnhauser L., Csosz L., Mesterházy Á. and Gyulai G. 2002 Identification of molecular markers for an efficient leaf rust resistance gene (Lr29) in wheat. Acta Biol. Szeged. 46, 133–134.

    Google Scholar 

  • Toor P. I., Kaur S., Bansal M., Yadav B. and Chhuneja P. 2016 Mapping of stripe rust resistance gene in an Aegilops caudata introgression line in wheat and its genetic association with leaf rust resistance. J. Genet. 95, 933–938.

    Article  CAS  PubMed  Google Scholar 

  • Tsitsin N. V. (ed) 1962 Wide hybridization in plants, pp. 453. Israel Programme for Scientific Translation, Jeruselem.

  • Valkoun J. J. 2001 Wheat pre-breeding using wild progenitors. Euphytica 119, 17–23.

    Article  Google Scholar 

  • Vanichanon A., Blake N. K., Sherman J. D. and Talbert L. E. 2003 Multiple origins of allopolyploid Aegilops triuncialis. Theor. Appl. Genet. 106, 804–810.

    Article  CAS  PubMed  Google Scholar 

  • Velu G., Singh R. P., Crespo-herrera L., Juliana P., Dreisigacker S., Valluru R. et al. 2018 Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. Sci. Rep. 8, 1–10.

    Article  CAS  Google Scholar 

  • Wellings C. R. 2011 Global status of stripe rust: a review of historical and current threats. Euphytica 179, 129–141.

    Article  Google Scholar 

  • Xu H., Zhang J., Zhang P., Qie Y., Niu Y., Li H. et al. 2014 Development and validation of molecular markers closely linked to the wheat stripe rust resistance gene YrC591 for marker-assisted selection. Euphytica 198, 317–323.

  • Xing L., Wang C., Xia X., He Z., Chen W., Liu T. et al. 2014 Molecular mapping of leaf rust resistance gene LrFun in Romanian wheat line Fundulea 900. Mol. Breed. 33, 931–937.

  • Zhang P., Zhou H., Lan C., Li Z. and Liu D. 2015 An AFLP marker linked to the leaf rust resistance gene LrBi16 and test of allelism with Lr14a on chromosome arm 7BL. Crop J. 3, 152–156.

  • Zhou X. L., Wang M. N., Chen X .M., Lu Y., Kang Z. S. and Jing J. X. 2014 Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theor. Appl. Genet. 127, 935–945.

Download references

Acknowledgements

The supply of the rust inoculum by Indian Institute of Wheat and Barley Research Station, Flowerdale, Shimla, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur.

Additional information

Corresponding editor: H. A. Ranganath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Kaur, S., Dhillon, G.S. et al. Introgression and genetic mapping of leaf rust and stripe rust resistance in Aegilops triuncialis. J Genet 100, 6 (2021). https://doi.org/10.1007/s12041-020-01253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01253-3

Keywords

Navigation