Journal of Genetics

, 98:114 | Cite as

A review on the conservation genetic studies of Indian amphibians and their implications on developing strategies for conservation

  • Priti HebbarEmail author
  • G. Ravikanth
  • N. A. AravindEmail author
Review Article


Amphibians show a very high level of diversity and endemism and are facing global declines from the past few decades. Studies have shown that the molecular tools can be helpful in their conservation efforts. In India, more than 80% of amphibians are endemic and most show a narrow range of distribution. Most of the Indian amphibians lack information on their genetic diversity. In this study, we review the overall trend on amphibian studies in India with the specific focus on conservation genetics. Overall, of the 173 studies, only 14 dealt with the conservation of amphibians through genetic tools and five studies estimated the genetic diversity or gene structure. Here, we discuss the gaps and provide future directions on how genetic studies can be helpful in Indian amphibian conservation.


population genetics conservation hot spots phylogeography genomics frog. 



NAA and GR acknowledge the support received from Department of Biotechnology, Government of India (Grant No.: BT/PR9900/BCE/8/1068/2013). PH received support from Department of Science and Technology, Government of India INSPIRE faculty fellowship(DST/INSPIRE/04/2017/003152).


  1. Aggarwal R. K., Janani S. J. and Sharma R. 2012 Development and characterization of polymorphic microsatellite markers of Fejervarya sahyadrensis useful for genetic studies. Conserv. Genet. Resour. 4, 799–802.CrossRefGoogle Scholar
  2. Anoop V. S., Kumar K. S., Sivakumar K. C., Reghunathan D., Manoj P., Deuti K. and George S. 2017 The complete mitochondrial genome of Euphlyctis karaavali (Amphibia: Anura) with a note on its range expansion. Conserv. Genet. Resour. 9, 427–430.CrossRefGoogle Scholar
  3. Aravind N. A., Ganeshaiah K. N. and Uma Shaanker R. 2004 Croak, croak, croak: are there more frogs to be discovered in Western Ghats? Curr. Sci. 86, 1471–1472.Google Scholar
  4. Arntzen J. W., Abrahams C., Meilink W. R., Iosif R. and Zuiderwijk A. 2017 Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period. Biodiv. Conserv. 26, 1411–1430.CrossRefGoogle Scholar
  5. Beebee T. J. C. 2005 Conservation genetics of amphibians. J. Hered. 95, 423–427.CrossRefGoogle Scholar
  6. Biju S. D. and Bossuyt F. 2003 New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 425, 711–714.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Biju S. D., Garg S., Mahony S., Wijayathilaka N., Senevirathne G. and Meegaskumbura M. 2014 DNA barcoding, phylogeny and systematics of Golden-backed frogs (Hylarana, Ranidae) of the Western Ghats-Sri Lanka biodiversity hotspot, with the description of seven new species. Contrib. Zool. 83, 269–335.CrossRefGoogle Scholar
  8. Blanquart F., Kaltz O., Nuismer S. L. and Gandon S. 2013 A practical guide to measuring local adaptation. Ecol. Lett. 16, 1195–1205.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Blaustein A. R. and Kiesecker J. M. 2002 Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 5, 597–608.CrossRefGoogle Scholar
  10. Bonin A., Taberlet P., Miaud C. and Pompanon F. 2006 Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol. Biol. Evol. 23, 773–783.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Collins J. P. and Storfer A. 2003 Global amphibian declines: sorting the hypotheses. Divers. Distrib. 9, 89–98.CrossRefGoogle Scholar
  12. Costanzi J. M., Mège P., Boissinot A., Isselin-Nondedeu F., Guérin S., Lourdais O. et al. 2018 Agricultural landscapes and the Loire River influence the genetic structure of the marbled newt in Western France. Sci. Rep. 8, 17264.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cushman S. A. 2006 Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol. Cons. 128, 231–240.CrossRefGoogle Scholar
  14. DeSalle R. and George A. 2004 The expansion of conservation genetics. Nat. Rev. Genet. 5, 702–712.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dinesh K. P., Radhakrishnan C., Channakeshavamurthy B. H., Deepak P. and Kulkarni N. U. 2019 A Checklist of amphibians of India with IUCN conservation status (version 2.0. accessed 20 December 2018), Mhadei Research Center, Goa.Google Scholar
  16. Ellison A. R., Tunstall T., DiRenzo G. V., Hughey M. C., Rebollar E. A., Belden L. K. et al. 2014 More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Genome Biol. Evol. 7, 286–298.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Emel S. L. and Storfer A. 2012 A decade of amphibian population genetic studies: synthesis and recommendations. Conserv. Genet. 13, 1685–1689.CrossRefGoogle Scholar
  18. Frost D. R. 2019 Amphibian species of the World: an online reference. Version 6.0 accessed 10 February 2019 (
  19. Funk W. C., Tallmon D. A. and Allendorf F. W. 1999 Small effective population size in the long-toed salamander. Mol. Ecol. 8, 1633–1640.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Funk W. C., McKay J. K., Hohenlohe P. A. and Allendorf F. W. 2012 Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Garg S., Das A., Kamei R. G. and Biju S. D. 2018 Delineating Microhyla ornata (Anura, Microhylidae): mitochondrial DNA barcodes resolve century-old taxonomic misidentification. Mitochondrial DNA Part B 3, 856–861.CrossRefGoogle Scholar
  22. Gopalan S. V., Kumar S. U., Kumar K. S. and George S. 2016 Genetic diversity of an endangered bush frog Pseudophilautus wynaadensis (Jerdon, 1854 “1853”) from the south of Palghat gap, Western Ghats, India. Mitochondrial DNA Part A 27, 3846–3851.CrossRefGoogle Scholar
  23. Gower D. J., Dharne M., Bhatta G., Giri V., Vyas R., Govindappa V. et al. 2007 Remarkable genetic homogeneity in unstriped, long-tailed Ichthyophis along 1500 km of the Western Ghats, India. J. Zool. 272, 266–275.CrossRefGoogle Scholar
  24. Gower D. J., Agarwal I., Karanth K. P., Datta-Roy A., Giri V. B., Wilkinson M. et al. 2016 The role of wet-zone fragmentation in shaping biodiversity patterns in peninsular India: insights from the caecilian amphibian Gegeneophis. J. Biogeogr. 43, 1091–1102.CrossRefGoogle Scholar
  25. Hebbar P. 2018 Ecology and conservation genetics of Nyctibatrachus spp from the Central Western Ghats. Ph. D. thesis, Manipal Academy of Higher Education, Manipal (
  26. IUCN 2019. The IUCN Redlist of threatened species (, accessed 20 January 2019).
  27. Jaeger J. R., Riddle B. R. and Bradford D. F. 2005 Cryptic neogene vicariance and quaternary dispersal of the red-spotted toad (Bufo punctatus): insights on the evolution of North American warm desert biotas. Mol. Ecol. 14, 3033–3048.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Jehle R. 2010 Herpetology and conservation genetics. Anim. Conserv. 13,72–73.CrossRefGoogle Scholar
  29. Jim L., Griffiths R. A., Lindsay C., Nancy B., Maddock S. T., Bradfield K. S. et al. 2019 Endemic, endangered, and evolutionarily significant: cryptic lineages in seychelles’ frogs. Biol. J. Linn. Soc. 126, 417–435.CrossRefGoogle Scholar
  30. Kiran S. K., Anoop V. S., Sivakumar K. C., Dinesh R., Mano J. P. et al. 2017 An additional record of Fejervarya manoharani Garg and Biju from the Western Ghats with a description of its complete mitochondrial genome. Zootaxa 4277, 491–502.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kumar K. S., Sivakumar K. C., Reghunathan D., Manoj P. and George S. 2017 The complete mitochondrial genome of Indirana semipalmata (Amphibia: Anura). Conserv. Genet. Resour. 9, 83–86.CrossRefGoogle Scholar
  32. Liang Z. Q., Chen W. T., Wang D. Q., Zhang S. H., Wang C. R., He S. P. et al. 2019 Phylogeographic patterns and conservation implications of the endangered Chinese giant salamander. Ecol. Evol. 9, 3879–3890.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Magalhães R. F., Lemes P., Camargo A., Oliveira U., Brandão R. A., Thomassen H. et al. 2017 Evolutionarily significant units of the critically endangered leaf frog Pithecopus ayeaye (Anura, Phyllomedusidae) are not effectively preserved by the Brazilian protected areas network. Ecol. Evol. 7, 8812–8828.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Manel S., Schwartz M. K., Luikart G. and Taberlet P. 2003. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18, 189–197.CrossRefGoogle Scholar
  35. McMahon B. J., Teeling E. C. and Höglund J. 2014 How and why should we implement genomics into conservation? Evol. Appl. 7, 999–1007.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Mahony S., Kamei R. G., Teeling E. C. and Biju S. D. 2018 Cryptic diversity within the Megophrys major species group (Amphibia: Megophryidae) of the Asian Horned Frogs: Phylogenetic perspectives and a taxonomic revision of South Asian taxa, with descriptions of four new species. Zootaxa 4523, 1–96.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Meenakshi K., Remya R. and Sanil G. 2010 DNA barcoding and microsatellite marker development for Nyctibatrachus major: the threatened amphibian species. In Proceedings of the International Symposium on Biocomputing. p. 4. ACM Digital library.Google Scholar
  38. Moritz C. 1994 Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Nair A., Kumar K. S., George S., Gopalan S. V., Li M. H., Leder E. H. et al. 2011. Sixty-two new microsatellite markers for an endemic frog Indirana beddomii from the Western Ghats biodiversity hotspot. Conserv. Genet. Resour. 3, 167–171.CrossRefGoogle Scholar
  40. Nair A., Gopalan S. V., George S., Kumar K. S. and Merilä J. 2012a Cross-species testing and utility of microsatellite loci in Indirana frogs. BMC Res. Notes 5, 389.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Nair A., Gopalan S. V., George S., Kumar K. S., Shikano T. and Merilä J. 2012b Genetic variation and differentiation in Indirana beddomii frogs endemic to the Western Ghats biodiversity hotspot. Conserv. Genet. 13, 1459–1467.CrossRefGoogle Scholar
  42. Nair A., Gopalan S. V., George S., Kumar K. S., Teacher A. G. F. and Merilä J. 2012c High cryptic diversity of endemic Indirana frogs in the Western Ghats biodiversity hotspot. Anim. Conserv. 15, 489–498.CrossRefGoogle Scholar
  43. Natesh M., Atla G., Nigam P., Jhala Y. V., Zachariah A., Borthakur U. et al. 2017 Conservation priorities for endangered Indian tigers through a genomic lens. Sci. Rep. 7, 9614.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Neville H. M., Gresswell R. E. and Dunham J. B. 2012 Genetic variation reveals influence of landscape connectivity on population dynamics and resiliency of western trout in disturbance-prone habitats. In Climate change, forests, fire, water, and fish: Building resilient landscapes, streams, and managers. (ed. C. Luce, P. Morgan, K. Dwire, D. Isaak, Z. Holden and B. Rieman), pp. 177–186. General Technical Report RMRS-GTR-290. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado.Google Scholar
  45. Pabijan M., Babik W. and Rafiński J. 2005. Conservation units in north-eastern populations of the Alpine newt (Triturus alpestris). Conserv. Genet. 6, 307–312.CrossRefGoogle Scholar
  46. Palsbøll P. J., Berube M. and Allendorf F. W. 2007 Identification of management units using population genetic data. Trends Ecol. Evol. 22, 11–16.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Pastenes L., Valdivieso C., Di Genova A., Travisany D., Hart A., Montecino M. et al. 2017 Global gene expression analysis provides insight into local adaptation to geothermal streams in tadpoles of the Andean toad Rhinella spinulosa. Sci. Rep. 7, 1966.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Phillipsen I. C., Funk W. C., Hoffman E. A., Monsen K. J. and Blouin M. S. 2011 Comparative analyses of effective population size within and among species: ranid frogs as a case study. Evolution 65, 2927–2945.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Priti H., Roshmi R. S., Ramya B., Sudhira H. S., Ravikanth G., Aravind N. A. et al. 2016 Integrative taxonomic approach for describing a new cryptic species of bush frog (Raorchestes: Anura: Rhacophoridae) from the Western Ghats, India. PLoS One 11, e0149382.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Raveendran R., Gopalan S. V. and George S. 2011 Twelve new microsatellite markers of Fejervarya keralensis, an endemic frog from Western Ghats, India. Biotechnol. Bioinf. Bioeng. 1, 401–403.Google Scholar
  51. Reddy P. A., Cushman S. A., Srivastava A., Sarkar M. S. and Shivaji S. 2017 Tiger abundance and gene flow in Central India are driven by disparate combinations of topography and land cover. Divers. Distrib. 23, 863–874.CrossRefGoogle Scholar
  52. Richter-Boix A., Quintela M., Kierczak M., Franch M. and Laurila A. 2013 Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol. Ecol. 22,1322–1340.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Sandberger-Loua L., Rödel M. O. and Feldhaar H. 2018 Gene-flow in the clouds: landscape genetics of a viviparous, montane grassland toad in the tropics. Conserv. Genet. 19, 169–180.CrossRefGoogle Scholar
  54. Savage A. E., Becker C. G. and Zamudio K. R. 2015 Linking genetic and environmental factors in amphibian disease risk. Evol. Appl. 8, 560–572.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Shaffer H. B., Gidiş M., McCartney-Melstad E., Neal K. M., Oyamaguchi H. M., Tellez M. et al. 2015 Conservation genetics and genomics of amphibians and reptiles. Annu. Rev. Anim. Biosci. 3, 113–138.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Shanker K., Ramadevi J., Choudhury B. C., Singh L. and Aggarwal R. K. 2004 Phylogeography of olive ridley turtles (Lepidochelys olivacea) on the east coast of India: implications for conservation theory. Mol. Ecol. 13, 1899–1909.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Spear S. F., Peterson C. R., Matocq M. D. and Storfer A. 2005 Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol. Ecol. 14, 2553–2564.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Storfer A., Eastman J. M. and Spear S. F. 2009 Modern molecular methods for amphibian conservation. BioScience 59, 559–571.CrossRefGoogle Scholar
  59. Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S., Fischman D. L. et al. 2004 Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Van Bocxlaer I., Biju S. D., Willaert B., Giri V. B., Shouche Y. S. and Bossuyt F. 2012 Mountain-associated clade endemism in an ancient frog family (Nyctibatrachidae) on the Indian subcontinent. Mol. Phylogenet. Evol. 62, 839–847.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Vieites D. R., Chiari Y., Vences M., Andreone F., Rabemananjara F., Bora P. et al. 2006 Mitochondrial evidence for distinct phylogeographic units in the endangered Malagasy poison frog Mantella bernhardi. Mol. Ecol. 15, 1617–1625.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Wang G.-D., Zhang B.-L., Zhou W.-W., Li Y.-X., Jin J.-Q., Shao Y. et al. 2018 Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc. Natl. Acad. Sci. USA 115, E5056–E5065.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Wang M. N., Duan L., Qiao Q., Wang Z. F., Zimmer E. A., Li Z. C. et al. 2018 Phylogeography and conservation genetics of the rare and relict Bretschneidera sinensis (Akaniaceae). PLoS One, 13, e0189034.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Waples R. S. 1991 Pacific salmon, Oncorhynchus spp., the definition of ‘species’ under the Endangered Species Act. Mar. Fish. Rev. 53, 11–22.Google Scholar
  65. Wake D. B. 1998 Action on amphibians. Trends Ecol. Evol. 13, 379–380.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Zeisset I. and Beebee T. J. C. 2008 Amphibian phylogeography: a model for understanding historical aspects of species distributions. J. Hered. 101, 109–119.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Suri Sehgal Centre for Biodiversity and ConservationAshoka Trust for Research in Ecology and the Environment (ATREE)BengaluruIndia
  2. 2.Evolutionary Venomics Lab, Centre for Ecological SciencesIndian Institute of ScienceBengaluruIndia

Personalised recommendations