Journal of Genetics

, 98:112 | Cite as

Evolutionary analysis of genus Channa based on karyological and 16S rRNA sequence data

  • Ravindra Kumar
  • Vishwamitra Singh Baisvar
  • Basdeo Kushwaha
  • Gusheinzed Waikhom
  • Mahender SinghEmail author
Research Article


A wide range of diploid number of chromosomes and the body size of Channa congeners are useful combination of characters for studying the factors controlling the body size. In this study, the karyological information was superimposed on the evolutionary tree generated by 16S rRNA mitochondrial gene sequences. Here, the metaphase chromosome complements stained with Giemsa, AgNO3 and CMA3 were prepared from six snakehead murrel fish species collected from northeast India. The diploid chromosome numbers and the fundamental arms of C. aurantimaculata (2n =  52, NF = 98), C. gachua (2n = 56, NF = 84), C. marulius (2n = 44, NF = 58), C. orientalis (2n = 52, NF = 74), C. punctata (2n = 32, NF = 60) and C. striata (2n = 40, NF = 48) were calculated by the analysis of metaphase chromosome complements. Both methods of nucleolar organizer region (NOR) localization, silver nitrate and chromomycin A3, revealed NOR pairs of 1, 2, 3, 1, 4 and 3 in C. aurantimaculata, C. gachua, C. marulius, C. orientalis, C. punctata and C. striata, respectively. The subject species showed primitive type of asymmetrical chromosomes, except the C. punctata. The variation in 2n for C. orientalis (2n = 52, 78) and C. gachua (2n = 52, 78, 104) of a complete haploid set indicates the possibility of either ploidy change in C. orientalis and C. gachua, if we consider 2n = 52 or the Robertsonian rearrangements in different populations of these two species. The chromosome evolution tree was constructed on 16S rRNA ML-phylogenetic tree using ChromEvol 1.3. The analysis of chromosome evolution explained the loss or gain of chromosome, duplications or semiduplications mechanism. For time scaling the chromosome evolution, the node age of available 16S rRNA gene of Channa species were estimated, which was also used for estimating the time when chromosomal changes occurred in context of geological time-scale.


AgNO3 nucleolar organizer region Channa genus chromomycin A3 giemsa karyotype IUCN red list. 



Author gratefully thank the Department of Biotechnology for their financial support and ICAR-National Bureau of Fish Genetic Resources, Lucknow for providing work place facilities and encouragement.


  1. Arkhipchuk V. V. 1999 Chromosome database. Database of Dr. Victor Arkhipchuk.Google Scholar
  2. Banerjee S. K., Misra K. K., Banerjee S. and Ray-Chaudhuri S. P. 1988 Chromosome numbers, genome sizes, cell volumes and evolution of snake-head fish (family Channidae). J. Fish Biol. 33, 781–789.Google Scholar
  3. Barat A. 1985 A study of chromosomes in some Indian teleost (Pisces). Ph.D. thesis, Kalyani University, Kalyani, India.Google Scholar
  4. Bertollo L. A. C., Takahashi C. S. and Moreira F. O. 1978 Cytotaxonomic consideration on Hoplias lacrdae (Pisces, Erythrinidae). Braz. J. Genet. 1, 103–120.Google Scholar
  5. Bhatti M. Z., Rafiq M. and Mian A. 2013 Kayrotype of sol (Channa marulius) from Indus river, Pakistan. J. Anim. Plant Sci. 23, 475–479.Google Scholar
  6. Black A. and Howell W. M. 1978 A distinctive chromosomal race of the cyprinodontid fish, Fundulusnotatus from the Upper Tombigbee river system of Alabama and Mississippi. Copeia 2, 280–288.Google Scholar
  7. Bohme M. 2004 Migration history of air-breathing fishes reveals neogene atmospheric circulation patterns. Geology 32, 393–396.Google Scholar
  8. Booke H. E. 1974 A cytotaxonomic study of the round white-fishes, genus Prospolium. Copeia 1,115–119.Google Scholar
  9. Campos H. H. and Cuevas C. 1997 Karyotypes of the most primitive catfishes (Teleostei: Siluriformas: Diplomystidae). J. Zool. Syst. Evol. Res. 35, 113–119.Google Scholar
  10. Chavananikul V., Wattanodorn S. and Wattanavijarn W. 1993 A study of chromosome number and morphology in 7 species of Thai freshwater fish. J. Aquat. Anim. Diseases 14, 19–34.Google Scholar
  11. Chatterjee K. 1989 Cytotaxonomic and electrophoretic investigations on Indian air-breathing fishes. In Fish genetics in India (ed. P. Das and A. G. Jhingran), pp. 83–99. Printers and Publishers, New Delhi.Google Scholar
  12. Chattopadhyay S. K. 1975 Studies on freshwater fishes of Belighata Bheries, Calcutta. Rec. Zool. Surv. India 357, 359–360.Google Scholar
  13. Cui J., Ren X. and Yu Q. 1991 Nuclear DNA content variation in fishes. Cytologia 56, 425–429.Google Scholar
  14. Darriba D., Taboada G. L., Doallo R. and Posada D. 2012 J Model Test 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772.PubMedPubMedCentralGoogle Scholar
  15. Denton T. E. 1973 Fish chromosome methodology, (ed. C. Charles), pp. 166. Tomas Springfield, Illinois.Google Scholar
  16. Dhar N. J. and Chatterjee K. 1984 Chromosomal evolution in Indian murrels (Channiformes: Channidae). Caryologia 37, 359–371.Google Scholar
  17. Donsakul T. and Magtoon W. 1991 A chromosome study on five species of fishes (Channa, family Channidae), from Thailand, Bangkok. In The Proceedings of the 29th Kasetsart University Annual Conference (Fisheries Section), pp. 561–574.Google Scholar
  18. Drummond A. J. and Rambaut A. 2007 BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol. 7, 214.PubMedPubMedCentralGoogle Scholar
  19. Eschmeyer W. N. and Fricke R. 2016 Catalog of fishes ( Electronic version Accessed 1 Nov. 2016.
  20. Froese R. and Pauly D. (ed) 2018 Fish base, (12/2018).
  21. Galleti P. M., Aguilar C. T. and Molina W. 2000 An overview of marine fish cytogenetics. Hydrobiologia 420, 55–62.Google Scholar
  22. Gold J. R. 1979 Cytogenetics. In Fish physiology (ed. W. S. Hoar, D. T. Randall and J. R. Brett), vol. 8, pp. 353–405. Academic Press, New York.Google Scholar
  23. Gold J. R., Li Y. C., Shipley N. S. and Powers P. K. 1990 Improved methods for working with fish chromosomes with a review of metaphase chromosome banding. J. Fish Biol. 37, 563–575.Google Scholar
  24. Hamilton F. 1822 An account of the fishes found in the river Ganges and its branches. Archibald Constable, Edinburgh.Google Scholar
  25. Hinegardner R. and Rosen D. E. 1972 Cellular DNA content and the evolution of teleostean fishes. Am. Nat. 106, 621–644.Google Scholar
  26. Hossain M. K., Latifa G. A. and Rahman M. M. 2008 Observations on induced breeding of snakehead murrel, Channa striata (Bloch, 1793). Int. J. Sustain. Crop Prod. 3, 65–68.Google Scholar
  27. Howell W. M. and Black D. A. 1980 Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36, 1014.PubMedGoogle Scholar
  28. IUCN 2016 The IUCN red list of threatened species. Version 2016-3. <>. Downloaded on 08 March 2017.
  29. Jankum M., Oclaewicz K., Pardo B. G., Martinez P., Woznicki P. and Sanchez L. 2003 Localization of 5SrRNA loci in three coregonid species (Samonidae). Genetica 119, 183–186.Google Scholar
  30. Jhingran V. G. 1982 Fish and fisheries of India, pp. 467–470. Hindustan Publishing, Delhi.Google Scholar
  31. Kang L., Yucheng L. and Dun Z. 1985 Studies on the karyotypes and C-banding patterns of three species in Channidae (Pisces). Acta. Genet. Sin. 12, 470–477.Google Scholar
  32. Khakhong S., Supiwong W., Tanomtong A., Sriuttha M., Jearranaiprepame P., Soemphol W. et al. 2014 A first chromosomal characterization of NORs in splendid snakehead fish, Channalucius (Perciformes, Channidae). Cytologia 79, 133–139.Google Scholar
  33. Khuda-Bukhsh A. R., Chanda T. and Barat A. 1986 Karyomorphology and evolution in some Indian hill stream fishes with particular reference to polyploidy in some species. In Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific fishes (ed. Uyeno T., Arai R., Taniuchi T. and K. Matsuura), pp. 886–898. Ichthyological Society of Japan, Tokyo.Google Scholar
  34. Klinkhardt M., Tesche M. and Greven H. 1995 Database of fish chromosomes. Westarp Wissenschaften, Hohe Börde.Google Scholar
  35. Kumar R., Kushwaha B., Nagpure N. S., Behera B. K. and Lakra W. S. 2013 Karyological and molecular diversity in three freshwater species of the genus Channa (Teleostei, Perciformes) from India. Caryologia 66, 109–119.Google Scholar
  36. Legrande W. H. 1980 The chromosome complement of Arius felis (Siluriformes: Ariidae). Jpn. J. Ichthyol. 27, 82–84.Google Scholar
  37. Legrande W. H. 1981 Chromosomal evolution in North American catfishes (Siluriformes: Ictaluridae) with particular emphasis on the Madtoms, Noturus. Copeia 1, 33–52.Google Scholar
  38. Legrande W. H. and Cavander T. M. 1980 The chromosome complement of the stonecat Madtoms, Noturus flavus (Siluriformes: Ictaluridae) with evidence for the existence of a possible chromosomal race. Copeia 2, 341–344.Google Scholar
  39. Levan A., Fredga K. and Sandberg A. 1964 Nomenclature for centromeric position on Chromosomes. Hereditas 52, 201–220.Google Scholar
  40. Lingyun Z. J. L. 1982 Karyotype analysis of the snake-head Ophiocephalus argus. J. Beijing Normal Univ. (Nat. Sci.) 3.Google Scholar
  41. Lopez P. A. and Fenocchio A. S. 1994 Confirmation of two different cryptotypes for the neotropical fish Hoplias malabricus Gill 1903 (Characiformes). Cytobios 80, 217–221.Google Scholar
  42. Magtoon W., Donsakul T. and Rangsiruji A. 2006 Karyotypes of two Channid fishes (family Channidae): Channa maruloides and C. asiatica. In 32nd Congress on Science and Technology of Thailand, Bangkok.Google Scholar
  43. Manna G. K. and Prasad R. 1973 Chromosomes in three species of fish (Channa). Nucleus 16, 150–157.Google Scholar
  44. Manna G. K. and Prasad R. 1974 Cytological evidence for two forms of Mystus vittatus as two species. Nucleus 17, 4–8.Google Scholar
  45. Mayrose I., Barker M. S. and Otto S. P. 2010 Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst. Biol. 59, 132–144.PubMedGoogle Scholar
  46. Michelle N. Y. T., Shanti G. and Loqman M. Y. 2004 Effect of orally administered Channa striata extract against experimentally-induced osteoarthritis in rabbits. Int. J. Appl. Res. Vet. Med. 2, 171–175.Google Scholar
  47. Morescalchi A. 1975 Chromosome evolution in the caudate amphibians. Evol. Biol. 8, 338–387.Google Scholar
  48. Musikasinthorn P. 2000 Channa aurantimaculata, a new channid fish from Assam (Brahmaputra River basin), India, with designation of a neotype for C. amphibeus (McClelland, 1845). Ichthyol. Res. 47, 27–37.Google Scholar
  49. Nayyar R. P. 1966a Karyotype studies in seven species of Cyprinidae. Genetica 35, 95–104.Google Scholar
  50. Nayyar R. P. 1966b Karyotype studies in thirteen species of fishes. Genetica 37, 78–92.PubMedGoogle Scholar
  51. Post V. A. 1965 Vergleichende Untersuchungen der Chromosomenzahlen hei Süßwasser-Teleosteern. J. Zool. Syst. Evol. Res. 3, 47–93.Google Scholar
  52. Rishi K. K. 1973 Somatic karyotypes of three teleosts. Genen. Phaenen. 16, 101–107.Google Scholar
  53. Rishi K. K. and Haobam M. S. 1984 Karyotypes of three forms of fishes having high chromosome number. Int. J. Acad. Ichthyol. 5, 1–2.Google Scholar
  54. Roe L. J. 1991 Phylogenetic and ecological significance of Channidae (Osteichichthys, Teleostei) from the early Eocene Kuldana formation of Kohat, Pakistan. Contributions from the Museum of Paleontology, University of Michigan. 28, 93–100.Google Scholar
  55. Ruma F., Ahmed A. T. A. and Alam S. S. 2006 Karyotype analysis of Channa punctata Bloch and Channa orientalis Schneider with Giemsa, CMA3 and DAPI. Cytologia 71, 425–430.Google Scholar
  56. Singh S. S., Singh C. B., Thoidingjam L. and Waikhom G. 2013 A new report of karyotype in the freshwater snakehead fish, Channa gachua (Channidae: Perciformes) from Northeast India, Manipur. Int. J. Res. Fish. Aquac. 3, 7–12.Google Scholar
  57. Stebbins G. L. 1971 Chromosomal evolution in higher plants. Edward Arnold Ltd., London.Google Scholar
  58. Stingo V. 1979 New developments in vertebrate cytotaxonomy II. The chromosomes of the cartilagenous fishes. Genetica 50, 227–239.Google Scholar
  59. Supiwong W. and Jearranaiprepame P. 2009 Cytogenetics of giant snakehead fish (Channa micropeltes) from the Northeast of Thailand. In The Proceedings of 12th National Graduate Research Conference, Khon Kaen. BMP6, 1584–1590.Google Scholar
  60. Supiwong W., Jearranaiprepame P. and Tanomtong A. 2009 A new report of karyotype in the chevron snakehead fish, Channa striata (Channidae, Pisces) from Northeast Thailand. Cytologia 74, 317–322.Google Scholar
  61. Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011 MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.PubMedPubMedCentralGoogle Scholar
  62. Tanomtong A., Supiwong W., Jearranaiprepame P., Khakhong S., Kongpironchuen C. and Getlekha N. 2014 A new natural autotetraploid and chromosomal characteristics of dwarf snakehead fish, Channa gachua (Perciformes, Channidae) in Thailand. Cytologia 79, 15–27.Google Scholar
  63. Ueda T., Irie S. and Kato Y. 1987 Longitudinal differentiation of metaphase chromosomes of Indian muntjac as studies by restriction enzyme digestion, in situ hybridization with cloned DNA probes and Distamycin A plus DAPI fluorescence staining. Chromosoma 95, 251–257.PubMedGoogle Scholar
  64. Wattanodorn S., Chavananikul V. and Wattanavijarn W. 1985 Cell culture derived from Snakehead fish (Channa striata). Thai J. Vet. Med. 15, 305–312.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Molecular Biology and Biotechnology DivisionICAR-National Bureau of Fish Genetic ResourcesLucknowIndia
  2. 2.Institute of Bioresources and Sustainable DevelopmentImphalIndia

Personalised recommendations