Journal of Genetics

, 98:111 | Cite as

Genomic marker assisted identification of genetic loci and genes associated with variation of grain zinc concentration in rice

  • Kumkum Kumari
  • Pankaj Kumar
  • Vinay K. SharmaEmail author
  • Santosh K. Singh
Research Article


A study was conducted to examine the genetic divergence and to determine the genetic loci and genes associated with natural variation of grain zinc (Zn) concentration among 28 landraces, improved varieties and advanced breeding lines of rice using candidate gene specific primers. Field evaluation of the experimental material was conducted in randomized block design with three replications and Zn content in unpolished grains of the entries was determined by addition of nitric acid and perchloric acid (1:3) following the procedure of diacid digestion method. Statistical analysis revealed the exploitable extent of variability with respect to grain Zn concentration among the entries. Eighteen entries were selected from the two extremes of grain Zn distribution range and subjected to molecular profiling using a panel of 14 candidate genes specific 12 reported and 14 designed primer pairs. Only eight (OsZIP1-1, OsZIP3a, OsZIP4a, OsZIP5-3, OsZIP7-2, OsZIP8b, OsNRAMP7 and OsNAAT1) reported and eight (OsZIP3K, OsZIP4K, OsZIP5K, OsZIP7K, OsNRAMP7K, OsNAAT1K, OsNACK and OsYSL14K) designed primers generated polymorphic amplified products showing sequence length variation due to targeted amplification of candidate genes specific genomic regions. Ample genetic differentiation and divergence were revealed among the entries, which were accommodated into similarity coefficient-based six clusters, remarkably consistent with grain Zn concentration of the entries. Hierarchical classification pattern of entries was almost completely corroborated by principal co-ordinate analysis-based spatial distribution pattern of their genetic profiles. Molecular analysis based on candidate genes specific primers appeared to be an efficient approach for the elucidation of genetic differentiation and divergence in relation to variation of grain Zn concentration among entries. Hence, these markers can be effectively and efficiently utilized for grain Zn concentration related discrimination of rice genotypes and selection of parental genotypes for grain Zn biofortification. Microsatellites were detected within the candidate genes and amplicons, thereby providing a basis to deduce that the repeat sequence length variation in candidate genes may be a role player in the differential grain Zn accumulation in rice varieties. Single marker analysis established the association of OsNACK, OsZIP1-1, OsNRAMP7 and OsNRAMP7K with grain Zn concentration. Thus, these four markers can be effectively used in marker-assisted selection programme for grain Zn biofortification in rice.


rice candidate gene zinc concentration genetic variation zinc biofortification. 



Authors gratefully acknowledge the support of the Department of Plant Breeding and Genetics and the Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa (Samastipur), India, for providing rice varieties and zinc estimation facility, respectively, during the course of the present study.


  1. Agarwal S., Tripura Venkata V. G., Kotla A., Mangrauthia S. K. and Neelamraju S. 2014 Expression patterns of QTL based and other candidate genes in Madhukar × Swarna RILs with contrasting levels of iron and zinc in unpolished rice grains. Gene 546, 430–436.PubMedCrossRefGoogle Scholar
  2. Anuradha K., Agarwal P., Rao Y. V., Rao K. V., Viraktamath B. and Sarla N. 2012 Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna. Gene 508, 233–240.PubMedCrossRefGoogle Scholar
  3. Banerjee S. and Chandel G. 2011 Understanding the role of metal homeostasis related candidate genes in Fe/Zn uptake, transport and redistribution in rice using semi-quantitative RT-PCR. J. Plant Mol. Biol. Biotechnol. 2, 33–46.Google Scholar
  4. Banerjee S., Sharma D. J., Verulkur S. B. and Chandel G. 2010 Use of insilico and semiquantitaive RT-PCR approaches to develop nutrient rich (Oryza sativa L.). Indian J. Biotechnol. 9, 203–212.Google Scholar
  5. Becerra V., Paredes M., Gutiérrez E. and Rojo C. 2015 Genetic diversity, identification, and certification of Chilean rice varieties using molecular markers. Chil. J. Agric. Res. 75, 267–274.CrossRefGoogle Scholar
  6. Bekele B. D., Naveen G. K., Rakhi S. and Shashidhar H. E. 2013 Genetic evaluation of recombinant inbred lines of rice (Oryza sativa L.) for grain zinc concentrations, yield related traits and identification of associated SSR markers. Pak. J. Biol. Sci. 16, 1714–1721.PubMedCrossRefGoogle Scholar
  7. Biradar H., Bhargavi M. V., Sasalwad R., Parama R. and Hittalmani S. 2007 Identification of QTL associated with silicon and zinc content in rice (Oryza sativa L.) and their role in blast disease resistance. Indian J. Genet. Plant Breed. 67, 105–109.Google Scholar
  8. Brar B., Jain S. and Jain R. K. 2014 Molecular profiling of rice (Oryza sativa L.) genotypes differing in micronutrients (iron and zinc) content. Indian J. Genet. Plant Breed. 74, 81–85.CrossRefGoogle Scholar
  9. Brar B., Jain R. K. and Jain S. 2015 Correlation of molecular marker allele size with physio-morphological and micronutrient (Zn, Fe) traits among rice genotypes. Int. J. Curr. Sci. 15, 42–50.Google Scholar
  10. Chandel G., Banerjee S. and Verulkar B. 2008 Expression profiling of metal homeostasis related candidate genes in rice (Oryza spp.) using semi quantitative RT-PCR analysis. Rice Genet. Newsl. 25, 44–47.Google Scholar
  11. Chauhan R. S. 2006 Bioinformatics approach toward identification of candidate genes for zinc and iron transporters in maize. Curr. Sci. 9, 510–515.Google Scholar
  12. Chen W. R., Feng Y. and Chao Y. E. 2008 Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ. J. Plant Physiol. 55, 400–409.CrossRefGoogle Scholar
  13. Cheng L., Wang F., Shou H., Huang F., Zheng L., He F. et al. 2007 Mutation in Nicotianamine aminotransferase stimulated the Fe (II) acquisition system and led to iron accumulation in rice. Plant Physiol. 145, 1647–1657.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Depar N., Rajpar I., Memon M. Y., Imtiaz M. and Zia-ul-hassan. 2011 Mineral nutrient densities in some domestic and exotic rice genotypes. Pak. J. Agric. Agril. Eng. Vet. Sci. 27, 134–142.Google Scholar
  15. Dice L. R. 1945 Measure of the amount of ecologic association between species. Ecology 26, 297–302.CrossRefGoogle Scholar
  16. Fumiyuki G., Toshihiro Y., Naoki S., Seiichi T. and Fumio T. 1999 Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 17, 282–286.CrossRefGoogle Scholar
  17. Gande N. K., Kundur P. J., Soman R., Ambati R., Ashwathanarayana R., Bekele B. D. et al. 2014 Identification of putative candidate gene markers for grain zinc content using recombinant inbred lines (RIL) population of IRRI38 x Jeerigesanna. Afr. J. Biotechnol. 13, 657–663.CrossRefGoogle Scholar
  18. Graham R. D., Senadhira D., Beebe S., Iglesias C. and Monasterio I. 1999 Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res. 60, 57–80.CrossRefGoogle Scholar
  19. Gregorio G. B., Senadhira D., Graham R. D. and Htut T. 1999 Improving iron and zinc value of rice for human nutrition. Agric. Dev. 23, 68–81.Google Scholar
  20. Heinemann R. J. B., Fagundes P. L., Pinto E. A., Penteado M. V. C. and Lanfer-Marquez U. M. 2005 Comparative study of nutrient composition of commercial brown, parboiled and milled rice from Brazil. J. Food Compos. Anal. 18, 287–296.CrossRefGoogle Scholar
  21. Holla K. M., Khan A. J., Sowjanya S. M. and Shashidhar H. E. 2014 Monomorphic molecular markers are as informative as polymorphic molecular markers. Indian J. Genet. Plant Breed. 74, 596–601.CrossRefGoogle Scholar
  22. Holm P. B., Kristiansen K. N. and Pedersen H. B. 2002 Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability. J. Nutr. 132, 514–516.CrossRefGoogle Scholar
  23. Ishikawa R., Iwata1 M., Taniko K., Monden G., Miyazaki N., Orn C. et al. 2017 Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryzameridionalis, a potential genetic resource for biofortification of rice. PLoS One 12, e0187224.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ishimaru Y., Masuda H., Suzuki M., Bashir K., Takahashi M. and Nakanishi H. 2007 Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J. Exp. Bot. 58, 2909–2915.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Johnson A. A. T., Kyriacou B., Callahan D. L., Carruthers L. and Stangoulis J. 2011 Constitutive overexpression of the OsNAS gene family reveals single gene strategies for effective iron and zinc biofortification of rice endosperm. PLoS One 6, e24476.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Krupa K. N., Shashidhar H. E., Dalawai N., Reddy, M. and Swamy H. V. V. 2017 Molecular marker based genetic diversity analysis in rice genotypes (Oryza sativa L.) using SSR markers. Int. J. Pure App. Biosci. 5, 668–674.CrossRefGoogle Scholar
  27. Kumari P., Kumar P. and Sharma V. K. 2018 Candidate gene markers based preliminary genetic analysis in relation to grain zinc and iron accumulation in rice varieties. J. Pharmacogn. Phytochem. 7, 1300–1305.Google Scholar
  28. Lee S. and Gynheung A. N. 2009 Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 32, 408–416.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Lee S., Jeong H. J., Kim S. A., Lee J., Guerinot M. L. and An G. 2010a OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol. Biol. 73, 507–517.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lee S., Kim S. A., Lee J., Guerinot M. L. and An G. 2010b Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol. Cells 29, 551–558.PubMedCrossRefGoogle Scholar
  31. Lu K., Li L., Zheng X., Zhang Z., Mou T. and Hu Z. 2008 Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J. Genet. 87, 304–310.CrossRefGoogle Scholar
  32. Lucca P., Hurrell R. and Potrykus I. 2001 Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102, 392–397.CrossRefGoogle Scholar
  33. Madhuri L., Radhika K., Neeraja C. N., BabuV. R. and Usharani G. 2012 Molecular mapping of the chromosomal regions associated with zinc content in grains of rice (Oryza sativa L.) using microsatellite markers. J. Microbiol. Biotechnol. Res. 2, 900–905.Google Scholar
  34. Mia M. M., Rahman S., Islam M. M., Begum S. N. and Hassan L. 2015 Molecular characterization of rice genotypes for zinc biosynthetic gene(s) using microsatellite simple sequence repeat (SSR) markers. Asian J. Med. Biol. Res. 1, 187–197.CrossRefGoogle Scholar
  35. Murray M. G. and Thompson W. F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4326.CrossRefGoogle Scholar
  36. Nadia I., Mohiuddin, A. K. M., Sultana S. and Ferdous J. 2014 Diversity analysis of indica rice accessions (Oryza sativa L.) using morphological and SSR markers. Ann. Biol. Res. 5, 20–31.Google Scholar
  37. Narayanan N. N., Vasconcelos M. W. and Gurusak M. A. 2017 Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray. Plant Physiol. Biochem. 45, 271–286.Google Scholar
  38. Norton G. J., Deacon C. M., Xiong L. Z., Huang S. Y., Meharg A. A. and Price A. H. 2010 Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329, 139–153.CrossRefGoogle Scholar
  39. Palma M. N. N., Rocha G. C., Valadares Filho S. C. and Detmann E. 2015 Evaluation of acid digestion procedures to estimate mineral contents in materials from animal trials. Asian-Australas. J. Anim. Sci. 28, 1624–1628.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Patil A. C. and Shashidhar H. E. 2016 Validation of Zinc transporter specific primers in rice (Oryza sativa L.) accessions grown under Aerobic condition. Res. J. Chem. Environ. 20, 34–38.Google Scholar
  41. Pflieger S., Lefebvre V. and Causse M. 2001 The candidate gene approach in plant genetics: a review. Mol. Breed. 7, 275–291.CrossRefGoogle Scholar
  42. Ramesh S. A., Shin R., Eide D. and Schachtman D. P. 2003 Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 133, 126–134.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Rohlf F. 1998 NTSYS-pc numerical, multivariate analysis system. Version 2.02 g, Exeter Software, Applied Biostatistics Inc., Taxonomy. New York, USA.Google Scholar
  44. Shi R., Li H., Tong Y., Jing R., Zhang F. and Zou C. 2008 Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticumaestivum L.) grain. Plant Soil 306, 95–104.CrossRefGoogle Scholar
  45. Soman R., Gande N. K., Kundur P. J., Ambati R., Ashwathanarayana R., Bekele B. D. and Shashidhar H. E. 2014 Identification and validation of putative candidate gene markers for grain iron content in recombinant inbred lines of rice (Oryza sativa L.). Int. J. Agric. Inno. Res. 3, 923–930.Google Scholar
  46. Sperotto R. A., Boffa T., Duartea G. L., Santos L. S., Grusak M. A. and Fett J. P. 2010 Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. J. Plant Physiol. 167, 1500–1506.PubMedCrossRefGoogle Scholar
  47. Stangoulis J. C. R., Huynh B. L., Welch R. M., Choi E. Y. and Graham R. D. 2007 Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154, 289–294.CrossRefGoogle Scholar
  48. Suma M. R. 2015 Identification of SSRs based candidate gene for iron and zinc content in rice (Oryza sativa L.) using bioinformatics tools. Trends Biosci. 8, 288–298.Google Scholar
  49. Suma M. R. and Shashidhar H. E. 2015 Assessment of genetic diversity using SSR and candidate gene markers among rice accessions (Oryza sativa L.) in relation to grain micronutrient (Iron and Zinc) content. Res. J. Biotechnol. 10, 37–43.Google Scholar
  50. Swamy B. P. M., Kaladhar K., Anuradha K., Batchu A. K., Longvah T. and Sarla N. 2018 QTL analysis for grain iron and zinc concentration in two O. nivara derived backcross populations. Rice Sci. 25, 197–207.CrossRefGoogle Scholar
  51. Tiwari V. K., Rawat N., Chhuneja P., Neelam K., Aggarwal R., Randhawa G. S. et al. 2009 Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J. Hered. 100, 771–776.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Upadhyay P., Singh V. K. and Neeraja C. N. 2011 Identification of genotype specific alleles and molecular diversity assessment of popular rice (Oryza sativa L.) varieties of India. Int. J. Plant. Breed. Genet. 5, 130–140.CrossRefGoogle Scholar
  53. Zhang X., Zhang G., Guo L., Wang H., Zeng D., Dong G., Qian Q. and Xue D. 2011 Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180, 173–179.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Kumkum Kumari
    • 1
  • Pankaj Kumar
    • 1
  • Vinay K. Sharma
    • 1
    Email author
  • Santosh K. Singh
    • 2
  1. 1.Department of Agricultural Biotechnology and Molecular BiologyDr. Rajendra Prasad Central Agricultural UniversityPusaIndia
  2. 2.Department of Soil ScienceDr. Rajendra Prasad Central Agricultural UniversityPusaIndia

Personalised recommendations