Journal of Genetics

, 98:37 | Cite as

Deciphering species relationships and evolution in Chenopodium through sequence variations in nuclear internal transcribed spacer region and amplified fragment-length polymorphism in nuclear DNA

  • Nikhil K. ChrungooEmail author
  • Rajkumari Jashmi Devi
  • Shailendra Goel
  • Kamal Das
Research Article


Evaluation of sequence variations in the internal transcribed spacer (ITS) region of 19 accessions, comprising of 11 accessions of Chenopodium quinoa, eight accessions of Chenopodium album and 165 retrieved sequences of different species of Chenopodium belonging to subfamily Chenopodioideae revealed a higher intraspecific genetic diversity in Himalayan C. album than that in C. quinoa. ITS and amplified fragment-length profiles of the accessions suggest the existence of accessions of Himalayan C. album as heteromorphs of the same species rather than a heterogenous assemblage of taxa. While the evolutionary relationship reconstructed from variations in 184 sequences of ITS region from species belonging to Chenopodiaceae, Amaranthaceae, Polygonaceae and Nelumbonaceae established a paraphyletic evolution of family Chenopodiaceae, it also revealed a monophyletic evolution of Chenopodieae I. The reconstruction also established five independent lineages of the subfamily Chenopodioideae with C. album as a sister clade of C. quinoa within the tribe Chenopodieae I. The results also indicate a much younger age for Himalayan chenopods (C. album) than the reported crown age of Chenopodieae I.


Chenopodioideae internal transcribed spacer amplified fragment-length profile time-measured phylogenetic tree evolutionary divergence Chenopodium 



Financial support received from Department of Biotechnology, Govt. of India vide grant no. BT/PR-8953/BCE/08/533/2007 and grant no BT/04/NE/2009 under the Biotech Hub programme is gratefully acknowledged. RJD gratefully acknowledges the receipt of financial support from Department of Science & Technology, Govt. of India in the form of a research fellowship under INSPIRE

Supplementary material

12041_2019_1079_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (docx 2318 KB)


  1. Alice L. A. and Campbell C. S. 1999 Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am. J. Bot. 86, 81–97.CrossRefGoogle Scholar
  2. Anabalon-Rodiguez L. and Thomet-Isla M. 2009 Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the south of Chile and highland accessions. J. Plant Breed. Crop. Sci. 1, 210–216.Google Scholar
  3. Bhargava A., Shukla S. and Ohri D. 2006 Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genet. Resour. Crop Evol. 53, 1309–1320.CrossRefGoogle Scholar
  4. Devi R. J. and Chrungoo N. K. 2015 Species relationships in Chenopodiumquinoa and Chenopodiumalbum on the basis of morphology and SDS-PAGE profiles of soluble seed proteins. J. Appl. Biol. Biotech. 3, 29–33.CrossRefGoogle Scholar
  5. Downie S., Katz-Downie D. and Cho K. 1997 Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences. Am. J. Bot. 84, 253–273.CrossRefGoogle Scholar
  6. Fuentes-Bazan S., Mansion G. and Borsch T. 2012a Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol. Phylogenet. Evol. 62, 359–374.CrossRefGoogle Scholar
  7. Fuentes-Bazan S., Uotila P. and Borsch T. 2012b A novel phylogeny-based generic classification for Chenopodium sensulato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42, 5–24.CrossRefGoogle Scholar
  8. Gangopadhyay G., Das S. and Mukerjee K. K. 2002 Speciation in Chenopodium in west Bengal, India. Genet. Resour. Crop Evol. 49, 503–510.CrossRefGoogle Scholar
  9. Gutell R. R., Larsen N. and Woese C. R. 1994 Lessons from an evolving ribosomal-RNA – 16S and 23S ribosomal-RNA structures from a comparative perspective. 2Microbiol  Rev. 58, 10–26.PubMedPubMedCentralGoogle Scholar
  10. Jarvis D. E., Kopp O. R., Jellen E. N., Mallory M. A., Pattee J., Bonifacio A. et al. 2008 Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J. Genet. 87, 39–51.CrossRefGoogle Scholar
  11. Jarvis D. E., Yung S. H, Damien J. L., Sandra M. S., Bo L., Theo J. A. B. et al. 2017 The genome of Chenopodium quinoa. Nature 542, 307–312.CrossRefGoogle Scholar
  12. Joshi B. D. 1991 Genetic resources of leaf and grain Amaranthus and Chenopod. In Biodiversity (ed. M. S. Swam inathan and S. Jana), pp. 121–134. Macmillan India, Chennai.Google Scholar
  13. Kadereit G., Borsch T., Weising K. and Freitag H. 2003 Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164, 959–986.CrossRefGoogle Scholar
  14. Kolano B., Plucienniczak A., Kwasniewski M. and Maluszynska J. 2008 Chromosomal localization of a novel repetitive sequence in the Chenopodium quinoa genome. J. Appl. Genet. 49, 313–320.CrossRefGoogle Scholar
  15. Kolano B., McCann J., Orzechowska M., Siwinska D., Temsch E. and Weiss-Schneeweiss H. 2016 Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol. Phylogenet. Evol. 100, 109–123.CrossRefGoogle Scholar
  16. Kurashige N. S. and Agrawal A. A. 2005 Phenotypic plasticity to light competition and herbivory in Chenopodium album (Chenopodiaceae). Am. J. Bot. 92, 21–26.CrossRefGoogle Scholar
  17. La Duke J. and Crawford D. J. 1979 Character compatibility and phyletic relationships in several closely related species of Chenopodium of the Western United States. Taxon 28, 307–314.CrossRefGoogle Scholar
  18. Manhart J. R. and Rettig J. H. 1994 Gene sequence data. In Caryophyllales: evolution and systematics (ed. H.-D. Behnke and T. J. Mabry), pp. 235–246. Springer, Berlin.CrossRefGoogle Scholar
  19. Mehra P. and Malik C. 1963 Cytology of some Indian Chenopodiaceae. Caryologia 16, 67–84.CrossRefGoogle Scholar
  20. Mukherjee K. K. 1986 A comparative study of two cytotypes of Chenopodium album in West Bengal, India. Can. J. Bot. 64, 754–759.CrossRefGoogle Scholar
  21. Müller K. 2005 Seqstate: primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinform. 4, 65–69.CrossRefGoogle Scholar
  22. Müller K. and Borsch T. 2005 Phylogenetics of Amaranthaceae based on matK/trnK sequence data: evidence from parsimony, likelihood, and Bayesian analyses. Ann. Missouri Bot. Gard. 92, 66–102.Google Scholar
  23. Muller T., Philippi N., Dandekar T, Schltz J. and Wolf M. 2007 Distinguishing species. RNA 13, 1469–1472.CrossRefGoogle Scholar
  24. Murray M. G. and Thompson W. F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325.CrossRefGoogle Scholar
  25. Palomino G., Hernandez L. T. and Torres E. D. 2008 Nuclear genome size and chromosome analysis in Chenopodium quinoa and C-berlandieri subsp nuttalliae. Euphytica 164, 221–230.CrossRefGoogle Scholar
  26. Rahiminejad M. R. and Gornall R. J. 2004 Flavonoid evidence for allopolyploidy in the Chenopodium album aggregate (Amaranthaceae). Plant Syst. Evol. 246, 77–87.CrossRefGoogle Scholar
  27. Rana T. S., Narzary D. and Ohri D. 2010 Genetic diversity and relationships among some wild and cultivated species of Chenopodium l. (Amaranthaceae) using RAPD and DAMD methods. Curr. Sci. 98, 840–846.Google Scholar
  28. Rana T. S., Narzary D. and Ohri D. 2011 Molecular differentiation of Chenopodium album complex and some related species using ISSR profiles and ITS sequences. Gene 495, 29–35.CrossRefGoogle Scholar
  29. Rohlf F. J. 2000 NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.10f. Exeter Publishing, New York.Google Scholar
  30. Roldan-Ruiz I., Dendauw J., Bockstaele E. V., Depicker A. and Loose M. D. 2000 AFLP markers reveal high polymorphic rates in rye grasses (Lolium spp.). Mol. Breed. 6, 125–134.CrossRefGoogle Scholar
  31. Ruas P. M., Bonifacio A., Ruas C. F., Fairbanks D. J. and Andersen W. R. 1999 Genetic relationships among 19 accessions of six species of Chenopodium l. by random amplified polymorphic DNA fragments (RAPD). Euphytica 105, 25–32.CrossRefGoogle Scholar
  32. Schuster T. M., Setaro S. D. and Kron K. A. 2013 Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the Amphi-Pacific Muehlenbeckia. PLoS One 8, e61261.CrossRefGoogle Scholar
  33. Singh S. 2010 Understanding the weedy Chenopodium complex in the north central states. Dissertation, University of Illinois at Urbana-Champaign.Google Scholar
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011 MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.CrossRefGoogle Scholar
  35. Vos P., Hogers R., Bleeker R., Reijans M., Van de Lee T., Hornes M. et al. 1995 AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414.CrossRefGoogle Scholar
  36. Walsh B. M., Adhikary D., Maughan P. J., Emshwiller E. and Jellen E. N. 2015 Chenopodium polyploidy inferences from salt overly sensitive 1 (sos1) data. Am. J. Bot. 102, 533–543.CrossRefGoogle Scholar
  37. White T. J., Bruns T. D., Lee S. and Taylor J. 1990 Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: PCR protocols: a guide to methods and applications (ed. M. A. Innis, D. H. Gelf and, J. J. Sninsky and T. J. White), pp. 315–322, Academic Press, New York.Google Scholar
  38. Wikström, N., Savolainen V. and Chase M. W. 2001 Evolution of the angiosperms: Calibrating the family tree. Proc. R. Soc. Lond. B, Biol. Sci. 268, 2211–2220.CrossRefGoogle Scholar
  39. Wilson H. D. 1980 Artificial hybridization among species of Chenopodium sect. Chenopodium. Sys. Bot. 5, 253–263.CrossRefGoogle Scholar
  40. Wilson H. and Manhart J. 1993 Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri moq. Theor. Appl. Genet. 86, 642–648.CrossRefGoogle Scholar
  41. Wolf M., Achtziger M., Schultz J., Dandekar T. and Mueller T. 2005 Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 11, 1616–1623.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Nikhil K. Chrungoo
    • 1
    Email author
  • Rajkumari Jashmi Devi
    • 1
    • 3
  • Shailendra Goel
    • 2
  • Kamal Das
    • 2
  1. 1.Department of Botany, Centre for Advanced StudiesNorth-Eastern Hill UniversityShillongIndia
  2. 2.Department of BotanyUniversity of DelhiDelhiIndia
  3. 3.Institute of Bioresources and Sustainable DevelopmentTakyelpat, ImphalIndia

Personalised recommendations