Advertisement

Journal of Genetics

, 98:28 | Cite as

Clinical relationships between the rs2212020 and rs189897 polymorphisms of the ITGA9 gene and epithelial ovarian cancer

  • Jinyang Liu
  • Ting Liu
  • Lin Liang
  • Junyu He
  • Manying Zhang
  • Yanshan Ge
  • Shan Liao
  • Yanhong ZhouEmail author
  • Keqiang ZhangEmail author
Research Article
  • 36 Downloads

Abstract

To better understand the role of integrin subunit alpha 9 (ITGA9) gene polymorphism in epithelial ovarian cancer (EOC), we investigated the distribution of ITGA9 gene polymorphisms (rs2212020 and rs189897) and revealed whether these polymorphisms were associated with a curative effect in EOC. It was found that rs2212020 and rs189897 were correlated significantly with EOC incidence. The frequency of the C allele of rs2212020 was significantly higher in EOC patients than in the control group (\(P=0.009\), \(\upchi ^{2}=6.857\)). The population with the C allele of rs2212020 had a higher EOC risk than the population with the T allele (\(\hbox {hazard ratio}=1.97\), 95.0% \(\hbox {CI} =1.178-3.299\)). Further, our results showed that the CC genotype was a risk factor for EOC. Regarding the association between ITGA9 and the sensitivity to platinum-based chemotherapy in EOC, there were no statistically significant differences in the frequencies of the rs189897 and rs2212020 polymorphisms between the chemosensitive group and the control group. In multivariate analysis, the patients with the TT genotype of rs189897 had longer progression-free survival (PFS) than the patients without this genotype (\(P=0.010\), \(\hbox {OR}=2.491\)). The AT genotype of rs189897 was a risk factor for PFS in EOC. These findings suggested that rs189897 and rs2212020 could play important roles in EOC diagnosis and prognosis.

Keywords

epithelial ovarian cancer genetic variation ITGA9 gene survival time 

Notes

Acknowledgements

This work was supported by National Natural Sciences Foundation of China (81672685, 81272975); the Key Planned Science and Technology Project of Hunan Province (2012FJ3084); the Planned Project of Department of Health of Hunan Province (B2011-030, B2012-029); the Natural Science Foundation of Xinjiang Autonomous Region (2017D01C122).

References

  1. Barrett J. C., Fry B., Maller J. and Daly M. J. 2005 Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265.CrossRefGoogle Scholar
  2. Covens A., Carey M., Bryson P., Verma S., Fung Kee Fung M. and Johnston M. 2002 Systematic review of first-line chemotherapy for newly diagnosed postoperative patients with stage II, III, or IV epithelial ovarian cancer. Gynecol. Oncol. 85, 71–80.CrossRefGoogle Scholar
  3. Cuneo M. G., Schrepf A., Slavich G. M., Thaker P. H., Goodheart M., Bender D. et al. 2017 Diurnal cortisol rhythms, fatigue and psychosocial factors in five-year survivors of ovarian cancer. Psychoneuroendocrinology 84, 139–142.CrossRefGoogle Scholar
  4. Dmitriev A. A., Kashuba V. I., Haraldson K., Senchenko V. N., Pavlova T. V., Kudryavtseva A. V. et al. 2012 Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics 7, 502–513.CrossRefGoogle Scholar
  5. Dmitriev A. A., Rosenberg E. E., Krasnov G. S., Gerashchenko G. V., Gordiyuk V. V., Pavlova T. V. et al. 2015 Identification of novel epigenetic markers of prostate cancer by NotI-microarray analysis. Dis. Markers 2015, 241301.CrossRefGoogle Scholar
  6. Dong X., Men X., Zhang W. and Lei P. 2014 Advances in tumor markers of ovarian cancer for early diagnosis. Indian J. Cancer 51, e72–e76.CrossRefGoogle Scholar
  7. Gerashchenko G. V., Gordiyuk V. V., Skrypkina I. Y., Kvasha S. M., Kolesnik O. O., Ugryn D. D. et al. 2009 Screening of epigenetic and genetic disturbances of human chromosome 3 genes in colorectal cancer. Ukr. Biokhim. Zh. 81, 81–87.Google Scholar
  8. Guichet P. O., Guelfi S., Teigell M., Hoppe L., Bakalara N., Bauchet L. et al. 2015 Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells 33, 21–34.CrossRefGoogle Scholar
  9. Guo W. and Giancotti F. G. 2004 Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol. 5, 816–826.CrossRefGoogle Scholar
  10. Jessmon P., Boulanger T., Zhou W. and Patwardhan P. 2017 Epidemiology and treatment patterns of epithelial ovarian cancer. Expert Rev. Anticancer Ther. 17, 427–437.CrossRefGoogle Scholar
  11. Junzo K. 2013 New strategy for overcoming resistance to chemotherapy of ovarian cancer. Yonago Acta Med. 56, 43–50.Google Scholar
  12. Kashuba V., Dmitriev A. A., Krasnov G. S., Pavlova T., Ignatjev I., Gordiyuk V. V. et al. 2012 NotI microarrays: novel epigenetic markers for early detection and prognosis of high grade serous ovarian cancer. Int. J. Mol. Sci. 13, 13352–13377.CrossRefGoogle Scholar
  13. Li X. M., Li J., Zeng F. and Yi H. 2011 Association of ITGA9 gene rs189897 and rs2212020 genotypes and its haplotype with cerebral infarction (article in Chinese). Nan. Fang. Yi. Ke. Da. Xue. Xue. Bao. 31, 1142–1145.Google Scholar
  14. Lo K. W., Teo P. M., Hui A. B., To K. F., Tsang Y. S., Chan S. Y. et al. 2000 High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res. 60, 3348–3353.PubMedGoogle Scholar
  15. May T., Comeau R., Sun P., Kotsopoulos J., Narod S. A., Rosen B. et al. 2017 A comparison of survival outcomes in advanced serous ovarian cancer patients treated with primary debulking surgery versus neoadjuvant chemotherapy. Int. J. Gynecol. Cancer 27, 668–674.CrossRefGoogle Scholar
  16. Mostovich L. A., Prudnikova T. Y., Kondratov A. G., Loginova D., Vavilov P. V., Rykova V. I. et al. 2011 Integrin alpha9 (ITGA9) expression and epigenetic silencing in human breast tumors. Cell Adh Migr. 5, 395–401.CrossRefGoogle Scholar
  17. Nawaz I., Hu L. F., Du Z. M., Moumad K., Ignatyev I., Pavlova T. V. et al. 2015 Integrin \(\upalpha \)9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma. Oncotarget 6, 31493–31507.Google Scholar
  18. Ng C. C., Yew P. Y., Puah S. M., Krishnan G., Yap L. F., Teo S. H. et al. 2009 A genome-wide association study identifies ITGA9 conferring risk of nasopharyngeal carcinoma. J. Hum. Genet. 54, 392–397.CrossRefGoogle Scholar
  19. Ortega P., Moran A., Fernandez-Marcelo T., De Juan C., Frias C., Lopez-Asenjo J. A. et al. 2010 MMP-7 and SGCE as distinctive molecular factors in sporadic colorectal cancers from the mutator phenotype pathway. Int. J. Oncol. 36, 1209–1215.PubMedGoogle Scholar
  20. Park H. K., Ruterbusch J. J. and Cote M. L. 2017 Recent trends in ovarian cancer incidence and relative survival in the U.S. by race/ethnicity and histologic subtypes. Cancer Epidemiol. Biomarkers Prev. 26, 1511–1518.CrossRefGoogle Scholar
  21. Pastuszak-Lewandoska D., Kordiak J., Antczak A., Migdalska-Sęk M., Czarnecka K. H., Górski P. et al. 2016 Expression level and methylation status of three tumor suppressor genes, DLEC1, ITGA9 and MLH1, in non-small cell lung cancer. Med. Oncol. 33, 75.CrossRefGoogle Scholar
  22. Pavlova T. V., Kashuba V. I., Muravenko O. V., Yenamandra S. P., Ivanova T. A., Zabarovskaia V. I. et al. 2009 Technology of analysis of epigenetic and structural changes of epithelial tumors genome with NotI-microarrays by the example of human chromosome. Mol. Biol. (Mosk). 43, 339–347.CrossRefGoogle Scholar
  23. Senchenko V. N., Kisseljova N. P., Ivanova T. A., Dmitriev A. A., Krasnov G. S., Kudryavtseva A. V. et al. 2013 Novel tumor suppressor candidates on chromosome 3 revealed by NotI-microarrays in cervical cancer. Epigenetics 8, 409–420.CrossRefGoogle Scholar
  24. Sherry S. T., Ward M. H., Kholodov M., Baker J., Phan L., Smigielski E. M. and Sirotkin K. 2001 dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311.CrossRefGoogle Scholar
  25. Shi Y. Y. and He L. 2005 SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15, 97–98.CrossRefGoogle Scholar
  26. Takada Y., Ye X. and Simon S. 2007 The integrins. Genome Biol. 8, 1–9.CrossRefGoogle Scholar
  27. Torre L. A., Bray F., Siegel R. L., Ferlay J., Lortet-Tieulent J. and Jemal A. 2011 Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108.CrossRefGoogle Scholar
  28. Vozianov S. O., Kashuba V. I., Grygorenko V. M., Gordiyuk V. V., Danylets R. O., Bondarenko Y. M. et al. 2016 Identification of a new diagnostic marker of prostatic cancer, using NotI-microchips [article in Ukrainian]. Klin Khir. 4, 54–57.Google Scholar
  29. Xiong W., Zeng Z. Y., Xia J. H., Xia K., Shen S. R., Li X. L. et al. 2004 A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res. 64, 1972–1974.CrossRefGoogle Scholar
  30. Zagouri F., Dimopoulos M. A., Bournakis E. and Papadimitriou C. A. 2010 Molecular markers in epithelial ovarian cancer: their role in prognosis and therapy. Eur. J. Gynaecol. Oncol. 31, 268–277.PubMedGoogle Scholar
  31. Zhang J., Na S., Liu C., Pan S., Cai J. and Qiu J. 2016 MicroRNA-125b suppresses the epithelial-mesenchymal transition and cell invasion by targeting ITGA9 in melanoma. Tumour Biol. 37, 5941–5949.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of NeurologyTaoyuan People’s HospitalChangdePeople’s Republic of China
  3. 3.Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research InstituteCentral South UniversityChangshaPeople’s Republic of China
  4. 4.Cancer Research InstituteCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations