Advertisement

Journal of Genetics

, 98:30 | Cite as

LINC24065 is a monoallelically expressed long intergenic noncoding RNA located in the cattle DLK1–DIO3 cluster

  • Cui Zhang
  • Da Xu
  • Weina Chen
  • Junliang Li
  • Qinghua Gao
  • Shijie LiEmail author
Research Article
  • 36 Downloads

Abstract

Long noncoding RNAs (lncRNAs) are important regulators of biological processes, and regulate genomic imprinting in cis and/or trans to induce monoallelic expression with parent-origin-specific pattern. DLK1DIO3 domain is one of the largest imprinted clusters in mammals, and maternally expressed noncoding RNAs of this region is related to the pluripotency of the embryonic stem cells. Previously, we sequenced the cDNA of two maternally expressed noncoding RNAs, MEG8 and MEG9, and mapped a lncRNA (LINC24061) between the two genes in the cattle DLK1–DIO3 domain on chromosome 21. In this study, we identified LINC24065, a novel long intergenic noncoding RNA (lincRNA), which was also located between MEG8 and MEG9. We identified four variants of LINC24065 (LINC24065-v1, LINC24065-v2, LINC24065-v3 and LINC24065-v4) that were a result of alternative splicing from 18 exons. LINC24065-v1 and LINC24065-v2 showed tissue-specific expression patterns in adult bovine tissues, and LINC24065-v3 and LINC24065-v4 were detected in all eight analysed tissues (heart, liver, spleen, lung, kidney, skeletal muscle, adipose and brain). Using single-nucleotide polymorphism (SNP)-based method, LINC24065 was identified to have monoallelic expression in adult tissues, suggesting that it is imprinted in cows. These results provide a foundation for further investigation about whether LINC24065 plays a role in regulating imprinting of the DLK1–DIO3 domain.

Keywords

long intergenic noncoding RNA cattle LNC24065 gene monoallelic expression spliced variants 

Notes

Acknowledgements

This study was supported by National Natural Science Foundation of China (grant no. 31372312), Hebei province Natural Science Foundation of China (grant no. C2016204092).

References

  1. Barlow D. P. and Bartolomei M. S. 2014 Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133.CrossRefGoogle Scholar
  2. Bartolomei M. S. and Ferguson-Smith A. C. 2011 Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol. 3, a018382.CrossRefGoogle Scholar
  3. Benetatos L., Vartholomatos G. and Hatzimichael E. 2014 Dlk1-Dio3 imprinted cluster in induced pluripotency: landscape in the mist. Cell. Mol. Life. Sci. 71, 4421–4430.CrossRefGoogle Scholar
  4. Cao J. 2014 The functional role of long non-coding RNAs and epigenetics. Biol. Proced. Online 16, 1–11.CrossRefGoogle Scholar
  5. Cuellar Partida G, Laurin C., Ring S. M., Gaunt T. R., McRae A. F., Visscher P. M. et al. 2018 Genome-wide survey of parent-of-origin effects on DNA methylation identifies candidate imprinted loci in humans. Hum. Mol. Genet. 16, 2927–2939.CrossRefGoogle Scholar
  6. da Rocha S. T., Edwards C. A., Ito M., Ogata T. and Ferguson-Smith A. C. 2008 Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet. 24, 306–316.CrossRefGoogle Scholar
  7. Deniz E. and Erman B. 2017 Long noncoding RNA (LincRNA), a new paradigm in gene expression control. Funct. Integr. Genomics 17, 135–143.CrossRefGoogle Scholar
  8. Djebali S., Davis C. A., Merkel A., Dobin A., Lassmann T., Mortazavi A. et al. 2012 Landscape of transcription in human cells. Nature 489, 101–108.CrossRefGoogle Scholar
  9. Edwards C. A., Mungall A. J., Matthews L., Ryder E., Gray D. J., Pask A. J. et al. 2008 The evolution of the Dlk1-Dio3 imprinted domain in mammals. PLoS Biol. 6, e135.CrossRefGoogle Scholar
  10. Enfield K. S., Martinez V. D., Marshall E. A., Stewart G. L., Kung S. H., Enterina J. R. et al. 2016 Deregulation of small non-coding RNAs at the Dlk1-Dio3 imprinted locus predicts lung cancer patient outcome. Oncotarget 7, 80957–80966.CrossRefGoogle Scholar
  11. Engreitz J. M., Haines J. E., Perez E. M., Munson G., Chen J., Kane M. et al. 2016 Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 17, 452–455.CrossRefGoogle Scholar
  12. Enterina J. R., Enfield K. S. S., Anderson C., Marshall E. A., Ng K. W. and Lam W. L. 2017 Dlk1-Dio3 imprinted locus deregulation in development, respiratory disease, and cancer. Expert. Rev. Respir. Med. 11, 749–761.CrossRefGoogle Scholar
  13. Guttman M., Amit I., Garber M., French C., Lin M. F., Feldser D. et al. 2009 Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227.CrossRefGoogle Scholar
  14. Hagan J. P., O’Neill B. L., Stewart C. L., Kozlov S. V. and Croce C. M. 2009 At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qf1. PLoS One 4, e4352.CrossRefGoogle Scholar
  15. Iyer M. K., Niknafs Y. S., Malik R., Singhal U., Sahu A., Hosono Y. et al. 2015 The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208.CrossRefGoogle Scholar
  16. Johnsson P., Lipovich L., Grander D. and Morris K. V. 2014 Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim. Biophys. Acta 1840, 1063–1071.CrossRefGoogle Scholar
  17. Kanduri C. 2016 Long noncoding RNAs: lessons from genomic imprinting. Biochim. Biophys. Acta 1859, 102–111.CrossRefGoogle Scholar
  18. Liu L., Luo G.-Z., Yang W., Zhao X., Zheng Q., Lv Z. et al. 2010 Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J. Biol. Chem. 285, 19483–19490.CrossRefGoogle Scholar
  19. Marchese F. P. and Huarte M. 2014 Long non-coding RNAs and chromatin modifiers. Epigenetics 9, 21–26.CrossRefGoogle Scholar
  20. Meseure D., Drak Alsibai K., Nicolas A., Bieche I. and Morillon A. 2015 Long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. BioMed Res. Int. 2015, 1–14.CrossRefGoogle Scholar
  21. Mo C. F., Wu F. C., Tai K. Y., Chang W. C., Chang K. W., Kuo H. C. et al. 2015 Loss of non-coding RNA expression from the Dlk1-Dio3 imprinted locus correlates with reduced neural differentiation potential in human embryonic stem cell lines. Stem. Cell. Res. Ther. 6, 1–27.CrossRefGoogle Scholar
  22. Moradi S., Sharifi-Zarchi A., Ahmadi A., Mollamohammadi S., Stubenvoll A., Gunther S. et al. 2017 Small RNA sequencing reveals Dlk1-Dio3 locus-embedded micrornas as major drivers of ground-state pluripotency. Stem Cell Rep. 9, 2081–2096.CrossRefGoogle Scholar
  23. Morcos L., Ge B., Koka V., Lam K. C., Pokholok D. K., Gunderson K. L. et al. 2011 Genome-wide assessment of imprinted expression in human cells. Genome Biol. 12, 1–12.CrossRefGoogle Scholar
  24. Qu Z. and Adelson D. L. 2012 Bovine NCRNAs are abundant, primarily intergenic, conserved and associated with regulatory genes. PLoS One 7, e42638.CrossRefGoogle Scholar
  25. Sanchez Calle A., Kawamura Y., Yamamoto Y., Takeshita F. and Ochiya T. 2018 Emerging roles of long non-coding RNA in cancer. Cancer Sci. 109, 2093–2100.CrossRefGoogle Scholar
  26. Ulitsky I. and Bartel D. P. 2013 Lincrnas: genomics, evolution, and mechanisms. Cell 154, 26–46.CrossRefGoogle Scholar
  27. Zhang F. W., Zeng T. B., Han Z. B., He H. J., Chen Y., Gu N. et al. 2011 Imprinting and expression analysis of a non-coding RNA gene in the mouse Dlk1-Dio3 domain. J. Mol. Histol. 42, 333–339.CrossRefGoogle Scholar
  28. Zhang M., Zhao Y., Wang G., Li D., Chen W., Zhang C. et al. 2017 An imprinted long noncoding RNA located between genes MEG8 and MEG9 in the cattle Dlk1-Dio3 domain. Genetica 145, 1–7.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, College of Life SciencesHebei Agriculture UniversityBaodingPeople’s Republic of China
  2. 2.College of Traditional Chinese MedicineHebei UniversityBaodingPeople’s Republic of China
  3. 3.Institute of MicrobiologyHebei Academy of ScienceBaodingPeople’s Republic of China

Personalised recommendations