Advertisement

Journal of Genetics

, 98:27 | Cite as

Assessment of various genetic components through NCD-I and NCD-III designs of biparental mating in opium poppy

  • Krishna Nand Maurya
  • Pawan Kumar Pal
  • Geeta Asthana
  • Alka Srivastava
  • Sudhir ShuklaEmail author
Research Article
  • 13 Downloads

Abstract

Creation of genetic variability and development of varieties having higher yield potential depends on information about nature of gene action. The present investigation was undertaken to decipher the nature of gene action and allied genetic parameters involved in the inheritance of yield and yield-related component traits in opium poppy (Papaver somniferum L.). The biparental inbreeding progenies derived from four segregating base populations of crosses \(\hbox {NB-1Kr40-3/3} \times \hbox {NB-1Kr}30+0.2\hbox { -}2/1, \hbox {NB-5Kr40-}7/2 \times 58/1, \hbox {NB-1Kr30+0.2 -2}/1 \times 58/1\) and \(\hbox {NB-Kr40 -3}/3 \times \hbox {NB-5Kr40 -7}/2\) of opium poppy were analysed to study the gene actions involved in the inheritance of yield and component traits. Additive component of variance played a predominant role in North Carolina design (NCD)-I, while both additive and dominance genetic components were found important in NCD-III design. The presence of additive as well as nonadditive components of variance suggested that one or two generations of intermating in further generations followed by selection may lead to development of novel genotypes.

Keywords

biparental inbreeding progeny biparental mating gene action heritability Papaver somniferum 

Notes

Acknowledgements

The authors are grateful to the Director, CSIR-National Botanical Research Institute, (CSIR-NBRI), Lucknow for providing necessary facilities to carry out the research work. The help provided by Dr Kamlesh Kumar, Ex-Prof, N. D. Univ. Agric. Tech., Faizabad is gratefully acknowledged.

References

  1. Anbu S. Y. 2012 Genetic analysis of biparental progenies in bhendi [Abelmoschus esculentus (L.) Moench]. Int. J. Rec. Sci. Res. 3, 300–302.Google Scholar
  2. Bainade P. S., Manjarm R. E., Deshmukh S. G. and Kumbhar S. D. 2014 Genetic analysis in green gram (Vigna radiata (L.) wilczek) subjected to North Carolina Mating Design-I. BioScience 9, 875–878.Google Scholar
  3. Chandrakant Ramesh S., Vaijayanthi S., Byregowda P. V., Rao M. M., Keerthi A. C. M. et al. 2015 Impact of \(\text{ F }_{2}\) bi-parental on quantitative traits inter-relationships and frequency of transgressive segregants in Dolichos bean (Lablab purpureus L.). Elect. J. Pl. Breed. 6, 723–728.Google Scholar
  4. Comstock R. E. and Robinson H. F. 1952 Estimation of average dominance of genes. In Heterosis, pp. 494–516. Iowa State College Press, Ames.Google Scholar
  5. Guddadamath S., Mohankumar H. D. and Salimath P. M. 2011 Genetic analysis of segregating populations for yield in okra [Abelmoschus esculentus (L.) Moench]. Karnataka J. Agric. Sci. 24, 114–117.Google Scholar
  6. Hallur R. H., Shantappa T., Shivanand B. and Jagadeesha R. C. 2015 Genetic variability, heritability and genetic advance in okra biparental progenies. Int. J. Adv. Res. 3, 1199–1203.Google Scholar
  7. Hassan M. S., El-Said R. A. R. and Abd-El-Halim S. H. M. 2013 Estimation of heritability and variance components for some quantitative traits in bread wheat (Triticum aestivum L.). World. Appl. Sci. J. 27, 944–949.Google Scholar
  8. Hendawy H. I. 2008 Estimation of additive, dominance and detection of epistasis using triple test cross and line \(\times \) tester in bread wheat. Min. J. Agric. Res. 33, 997–1010.Google Scholar
  9. Kalola A. D. and Pandya H. R. 2016 Comparison of North Carolina designs for the study of genetic variances in okra (Abelmoschus esculentus (L.) Moench). Elect. J. Pl. Breed. 7, 842–848.CrossRefGoogle Scholar
  10. Kanwar M. S. and Korla B. N. 2004 Genetic analysis in late cauliflower (Brassica oleracea var. botrytis L.) subjected to North Carolina Mating Design-I. Indian J. Genet. Plant Breed. 64, 225–227.Google Scholar
  11. Koumber R. M. 2006 Detection of epistasis and estimation of additive and dominance components of genetic variation using triple test cross analysis in bread wheat. Egypt. J. Appl. Sci. 21, 448–461.Google Scholar
  12. Kumar B. and Patra N. K. 2012 Inheritance pattern and genetics of yield and component traits in opium poppy (Papaver somniferum L.). Ind. Crop Prod. 36, 445–448.CrossRefGoogle Scholar
  13. Kumar R. and Wehner T. C. 2013 Quantitative analysis of generations for inheritance of fruit yield in watermelon. Hort. Sci. 48, 844–847.Google Scholar
  14. Maurya K. N., Shukla S. and Asthana G. 2014 Pattern of quantitative inheritance of yield and component traits in opium poppy (Papaver somniferum L.). Genetika 46, 569–578.CrossRefGoogle Scholar
  15. Raju C., Satish G., Rajesab R. G., Shanthakumar G. and Anuluxmi N. 2010 Genetic variability created through biparental mating in bhendi (Abelmoschus esculentus (L.) Moench). Greg. Mend. Found. J. 1, 33–35.Google Scholar
  16. Rudra N. V., Bentur M. G. and Parameshwarappa K. G. 2009 Impact of biparental mating on genetic variability and path analysis in safflower. Karnataka J. Agric. Sci. 22, 44–46.Google Scholar
  17. Sharma J. R. 2008 Statistical and biometrical techniques in plant breeding, pp. 271. New Age, New Delhi.Google Scholar
  18. Sharma J. R., Yadav S. P. and Singh J. N. 1979 The components of genetic variation in biparental progenies and their use in breeding pearl millet (Pennisetum typhoides Burm. S and H). Z. Pflanzenzuchtung 82, 250–257.Google Scholar
  19. Shukla S. and Singh S. P. 2001 Inheritance of morphine in opium poppy (P. somniferum L.). Indian J. Genet. Plant Breed. 61, 263–266.Google Scholar
  20. Shukla S., Singh S. P., Yadav H. K. and Chatterjee A. 2006 Alkaloid spectrum of different germplasm lines in opium poppy (Papaver somniferum L.). Genet. Res. Crop. Evol. 53, 533–540.CrossRefGoogle Scholar
  21. Shukla S., Maurya K. N., Mishra B. K. and Rastogi A. 2016 Identification of heterotic crosses based on the combining ability of novel genotypes in opium poppy (Papaver somniferum L.). Rus. Agric. Sci. 42, 137–144.CrossRefGoogle Scholar
  22. Vinayan M. T. and Govindarasu R. 2010 Relative efficiency of biparental mating, single capsule descent, selected bulk and random bulk selections in sesame (Sesamum indicum L.). Elect. J. Pl. Breed. 1, 666–674.Google Scholar
  23. Weid M., Ziegler J. and Kutchan T. M. 2004 The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy (Papaver somniferum L). Proc. Natl. Acad. Sci. USA 101, 13957–13962.CrossRefGoogle Scholar
  24. Yadav H. K., Shukla S. and Singh S. P. 2006 Genetic variability and interrelationship among opium and its alkaloids in opium poppy (Papaver somniferum L). Euphytica 150, 207–214.CrossRefGoogle Scholar
  25. Yehia W. M. B. and Al-Ameer M. A. 2010 Estimation of genetic components by using North Carolina mating design system for detection desirable gene action in cotton. J. Agric. Chem. Biotech. 1, 287–294.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Krishna Nand Maurya
    • 1
  • Pawan Kumar Pal
    • 1
  • Geeta Asthana
    • 2
  • Alka Srivastava
    • 2
  • Sudhir Shukla
    • 1
    Email author
  1. 1.Genetics and Plant Breeding SectionCSIR-National Botanical Research InstituteLucknowIndia
  2. 2.Botany DepartmentLucknow UniversityLucknowIndia

Personalised recommendations