Journal of Genetics

, 98:15 | Cite as

Genetic diversity and phylogeny analysis of Antheraea assamensis Helfer (Lepidoptera: Saturniidae) based on mitochondrial DNA sequences

  • Mousumi SaikiaEmail author
  • Ramesh Nath
  • Dipali Devi
Research Article


Antheraea assamensis Helfer, popularly known as Muga silkworm, the golden silk producer of northeast India is economically important and unique among the Saturniid silkworms. In this study, the genetic diversity and phylogeny of semi-domesticated and wild morphs of Muga silkworm collected from different geographical locations of northeast India were investigated based on the sequences of five mitochondrial loci, i.e. 12S rRNA, 16S rRNA, CoxI, Cytb and CR. All the five mitochondrial loci showed a strong bias towards higher ‘A’ and ‘T’ contents. Transitional substitutions were found to be more than the transversional substitutions. The rate of nucleotide substitution and average genetic divergence were found to be highest in CR sequences and lowest in 12S rRNA gene sequences among the morphs of Muga silkworm. The morphs collected from same geographical area had identical 12S rRNA, 16S rRNA, CoxI and Cytb gene sequences. Moreover, the 12S rRNA and 16S rRNA gene sequences of some semi-domesticated and wild morphs collected from different geographical locations were also found to be similar. In the phylogenetic trees generated based on the mitochondrial loci, mixing of semi-domesticated and wild morphs was observed as they shared the same group. The information generated in this study will help in formulating strategies to conserve the natural biodiversity present among these unique silkworms in northeast India. In addition, this will be useful in identifying diverse morphs of Muga silkworm, which will help in effective breeding programmes to improve its productivity.


genetic diversity morph Muga phylogeny silkworm 



This research was carried out with financial support from the Department of Science and Technology, Govt. of India.


  1. Arif I. A. and Khan H. A. 2009 Molecular markers for biodiversity analysis of wildlife animals: a brief review. Anim. Biodivers. Conserv. 32, 9–17.Google Scholar
  2. Arunkumar K. P., Metta M. and Nagaraju J. 2006 Molecular phylogeny of silkmoths reveals the origin of domesticated silk moth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Mol. Phylogenet. Evol. 40, 419–427.CrossRefGoogle Scholar
  3. Arunkumar K. P., Sahu A. K., Mohanty A. R., Awasthi A. K., Pradeep A. R., Urs S. R. et al. 2012 Genetic diversity and population structure of Indian golden silkmoth (Antheraea assama). PLoS One 7, e43716.CrossRefGoogle Scholar
  4. Behura S. K. 2006 Molecular marker systems in insects: current trends and future avenues. Mol. Ecol. 15, 3087–3113.CrossRefGoogle Scholar
  5. Boore J. L. 1999 Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780.CrossRefGoogle Scholar
  6. Brown W. M., George Jr. M. and Wilson A. C. 1979 Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967–1971.CrossRefGoogle Scholar
  7. Cao L. J., Yang B. S., Li J., Li M., Wang Z., Yang R. S. and Qin L. 2007 RAPD analysis of Dictyoploca japonica from different areas. Acta Sericol. Sin. 33, 293–296.Google Scholar
  8. Chakraborty S., Muthulakshmi M., Vardhini D., Jayaprakash P., Nagaraju J. and Arunkumar K. P. 2015 Genetic analysis of Indian tasar silkmoth (Antheraea mylitta) populations. Sci. Rep. 5, 15728.Google Scholar
  9. Chowdhury S. N. 2001 Sericulture and weaving (an overview). Designer Graphics Press, Dibrugarh.Google Scholar
  10. Clary D. O. and Wolstenholme D. R. 1985 The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 22, 252–271.CrossRefGoogle Scholar
  11. Crozier R. H. and Crozier Y. C. 1993 The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133, 97–117.Google Scholar
  12. Deodikar G. B., Chowdhury S. N., Bhuyan B. N. and Kshirsagar K. K. 1962 Cytogenetic studies in Indian silkworms. Curr. Sci. 31, 247–248.Google Scholar
  13. DeSalle R., Freedman T., Prager E. M. and Wilson A. C. 1987 Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J. Mol. Evol. 26, 157–164.CrossRefGoogle Scholar
  14. Devi D., Sen Sarma N., Talukdar B., Chetri P., Baruah K. C. and Dass N. N. 2011 Study of the structure of degummed Antheraea assamensis (muga) silk fibre. J. Text. I. 6, 527–533.Google Scholar
  15. Dowton M. and Austin A. D. 1997 Evidence for AT-transversion bias in wasp (Hymenoptera: Symphyta) mitochondrial genes and its implications for the origin of parasitism. J. Mol. Evol. 44, 398–405.CrossRefGoogle Scholar
  16. Goel R. K. and Krishna Rao J. V. 2004 Oak tasar culture: aboriginal of Himalayas. APH Publishing, Guwahati.Google Scholar
  17. Hwang J. S., Lee J. S., Goo T. W., Yun E. Y., Sohn H. Y., Kim H. R. et al. 1999a Molecular genetic relationships between Bombycidae and Saturniidae based on the mitochondrial DNA encoding of large and small rRNA. Genet. Anal. Biomol. Eng. 15, 223–228.CrossRefGoogle Scholar
  18. Hwang J. S., Lee J. S., Goo T. W., Yun E. Y., Sohn H. Y., Kim H. R. et al. 1999b The comparative molecular study between Bombycidae and Saturniidae based on mtDNA RFLP and cytochrome oxidase I gene sequences: implication for molecular evolution. Z. Naturforch C 54, 587–594.CrossRefGoogle Scholar
  19. Kar P. K., Vijayan K., Mohandas T. P., Nair C. V., Saratchandra B. and Thangavelu K. 2005 Genetic variability and genetic structure of wild and semi-domestic populations of tasar silkworm (Antheraea mylitta) ecorace Daba as revealed through ISSR markers. Genetica 125, 173–183.CrossRefGoogle Scholar
  20. Kim I., Bae J. S., Sohn H. D., Kang P. D., Ryu K. S., Sohn B. H. et al. 2000 Genetic homogeneity in the domestic silkworm, Bombyx mori, and phylogenetic relationship between B. mori and the wild silkworm, B. mandarina using mitochondrial COI gene sequences. Int. J. Ind. Entomol. 1, 9–17.Google Scholar
  21. Li A., Zhao Q., Tang S., Zhang Z., Pan S. and Shen G. 2005 Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. J. Genet. 84, 137–142.CrossRefGoogle Scholar
  22. Li Y. P., Yang B. S., Wang H., Xia R. X., Wang L., Zhang Z. H. et al. 2009 Mitochondrial DNA analysis reveals a low nucleotide diversity of Caligula japonica in China. Afr. J. Biotechnol. 8, 2707–2712.Google Scholar
  23. Librado P. and Rozas J. 2009 DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.CrossRefGoogle Scholar
  24. Liu Y. Q., Lu C., Qin L. and Xiang Z. H. 2006 Genetic relationships of Antheraea pernyi cultivars based on RAPD markers. Sci. Agric. Sin. 39, 2608–2614.Google Scholar
  25. Milligan B. G., Leebens-Mack J. and Strand A. E. 1994 Conservation genetics: beyond the maintenance of marker diversity. Mol. Ecol. 12, 844–855.Google Scholar
  26. Morin P. A., Luikart G., Wayne R. K. and SNP workshop group. 2004 SNPs in ecology, evolution and conservation. Trends Ecol. Evol. 19, 208–216.Google Scholar
  27. Nagaraja, Nagaraju J. and Ranganath H. A. 2004 Molecular phylogeny of the nasuta subgroup of Drosophila based on 12S rRNA, 16S rRNA and CoI mitochondrial genes, RAPD and ISSR polymorphisms. Genes Genet. Syst. 79, 293–299.CrossRefGoogle Scholar
  28. Nagaraju J. and Goldsmith M. R. 2002 Silkworm genomics – progress and prospects. Curr. Sci. 83, 415–425.Google Scholar
  29. Neog K., Ranjit Singh H., Unni B. and Sahu A. K. 2010 Analysis of genetic diversity of muga silkworm (Antheraea assamensis, Helfer; Lepidoptera:Saturniidae) using RAPD-based molecular markers. Afr. J. Biotechnol. 9, 1746–1752.CrossRefGoogle Scholar
  30. Polus E., Vandewoestijne S., Choutt J. and Baguette M. 2006 Tracking the effects of one century of habitat loss and fragmentation on calcareous grassland butterfly communities. Biodivers. Conserv. 16, 3423–3436.CrossRefGoogle Scholar
  31. Sheppard W. S., Arias M. C. and Shimanuki H. 1994 Determination of mitochondrial DNA haplotypes from sting remnants of the honeybee Apis mellifera (Hymenoptera Apidae). Bull. Entomol. Res. 84, 551–554.CrossRefGoogle Scholar
  32. Simon C., Frati F., Beckenbach A., Crespi B., Liu H. and Flook P. K. 1994 Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann. Entomol. Soc. Am. 87, 651–701.CrossRefGoogle Scholar
  33. Singh Y. T., Mazumdar-Leighton S., Saikia M., Pant P., Kashung S., Neog K. et al. 2012 Genetic variation within native populations of endemic silkmoth Antheraea assamensis (Helfer) from Northeast India indicates need for in situ conservation. PLoS One 7, e49972.CrossRefGoogle Scholar
  34. Steffan-Dewenter I. and Tscharntke T. 2002 Insect communities and biotic interactions on fragmented calcareous grasslands – a mini review. Biol. Conserv. 104, 275–284.CrossRefGoogle Scholar
  35. Suzuki Y., Gage L. and Brown D. D. 1972 The genes for silk fibroin in Bombyx mori. J. Mol. Biol. 70, 637–649.CrossRefGoogle Scholar
  36. Tamura K. 1992 The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Mol. Biol. Evol. 9, 814–825.PubMedGoogle Scholar
  37. Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013 MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefGoogle Scholar
  38. Thangavellu K., Chakravorty A. K., Bhagowati A. K. and Isa M. D. 1988 Handbook of Muga culture, pp. 9–14. Central Silk Board, Bengaluru.Google Scholar
  39. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. 1997 The CLUSTAL\_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefGoogle Scholar
  40. Velu D., Ponnuvel K. M., Muthulakshmi M., Sinha R. K. and Qadri S. M. H. 2008 Analysis of genetic relationship in mutant silkworm strains of Bombyx mori using inter simple sequence repeat (ISSR) markers. J. Genet. Genomics 35, 291–297.CrossRefGoogle Scholar
  41. Whitfield J. B. and Cameron S. A. 1998 Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among Hymenoptera. Mol. Biol. Evol. 15, 1728–1743.CrossRefGoogle Scholar
  42. Yang B. S., Cao L. J., Li J., Li Y. R., Wang Z. and Qin L. 2008 Genetic diversity assessment of Dictyoploca japonica from different areas. Entomol. Knowl. 45, 418–421.Google Scholar
  43. Yoshitake N. 1968 Phylogenetic aspects on the origin of Japanese race of the silkworm, Bombyx mori L. J. Seric. Sci. Jpn. 37, 83–87.Google Scholar
  44. Zhu X. W., Liu Y. Q., Li X. S., Huo X. M., Jiang Y. R. and Qin L. 2008 Taxonomy status of wild oak silkworm in Yunnan revealed by DNA barcoding. Acta Sericol. Sin. 34, 424–428.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Seri-Biotech Unit, Life Sciences DivisionInstitute of Advanced Study in Science and TechnologyGuwahatiIndia
  2. 2.Department of ZoologyDhing CollegeDhing, NagaonIndia

Personalised recommendations