Journal of Genetics

, 98:26 | Cite as

Population structure and genetic diversity in yellow catfish (Pelteobagrus fulvidraco) assessed with microsatellites

  • Wenjie Guo
  • Chengtao Guo
  • Yuhong Wang
  • Weihua Hu
  • Jie MeiEmail author
Research Note


Yellow catfish (Pelteobagrus fulvidraco) is an important aquaculture species which is widely distributed, especially in the Yangtze River of China. To facilitate its conservation and stock improvement, 273 yellow catfish samples from the Yangtze River (seven populations) and Baiyangdian (BYD) Lake were genotyped using eight microsatellites in combination with capillary electrophoresis. A total of 250 alleles were detected at eight loci in eight populations showing high allelic (\(N_{\mathrm{a}} = 31.25 \pm 7.38\)) and genetic diversity (\(H_{\mathrm{e}} = 0.888\)–0.944). Both \(F_{{\mathrm{ST}}}\) and clustering analyses revealed the presence of subtle population differences between the species of Yangtze River and the BYD lake. Mantel tests suggest that genetic distance is significantly correlated with geographical distance (\(R = 0.9294\) and \(P< 0.05\)). The results of genetic diversity and population structure will help in conservation and improvement of yellow catfish.


yellow catfish microsatellite genetic diversity genetic structure isolation by distance Pelteobagrus fulvidraco 



This work was supported by China Agriculture Research System (CARS-46) and National Natural Science Foundation of China (31502158).

Supplementary material

12041_2019_1070_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (docx 24 KB)


  1. Bohonak A. J. 2002 ibd (isolation by distance): a program for analyses of isolation by distance. J. Hered. 93, 153–154.CrossRefGoogle Scholar
  2. Bossart J. L. and Prowell D. P. 1998 Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol. Evol. 13, 202–206.CrossRefGoogle Scholar
  3. Botstein D., White R. L., Skolnick M. and Davis R. W. 1980 Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331.PubMedPubMedCentralGoogle Scholar
  4. China Fisheries Statistical Yearbook 2017 Ministry of agriculture and fisheries bureau of China. China Agriculture Press, Beijing.Google Scholar
  5. Diwan N. and Cregan P. B. 1997 Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 95, 723–733.CrossRefGoogle Scholar
  6. Earl D. A. 2012 STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361.CrossRefGoogle Scholar
  7. Evanno G., Regnaut S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.CrossRefGoogle Scholar
  8. Excoffier L., Laval G. and Schneider S. 2005 Arlequin (version 3.0), an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50.CrossRefGoogle Scholar
  9. Hu G. F., Liang H. W., Li Z., Wang C. Z., Wu Q, C., Liu X. J. et al. 2009 Isolation and characterization of polymorphic microsatellite markers in the yellow catfish. Pelteobagrus fulvidraco. Conserv. Genet. Resour. 1, 63.CrossRefGoogle Scholar
  10. Launey S., Ledu C., Boudry P., Bonhomme F. and Naciri-Graven Y. 2002 Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. J. Hered. 93, 331–351.CrossRefGoogle Scholar
  11. Liu H. Y., Chen X. H. and Fei X. 2016 Population genetic structure of Pelteobagrus fulvidraco in the lakes of the middle and lower reaches of the Yangtze River and in Fuxian Lake of Yunnan. J. Cent. China Normal Univ. 50, 269–275.Google Scholar
  12. Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  13. Song P., Pan Y. F., Zhu X., Hu J. R., Hu Y. C. and Cai C. L. 2001 RAPD markers and genetic diversity in Pelteobagrus Fulvidraco. Wuhan Univ. J. Nat. Sci. 47, 233–237.Google Scholar
  14. Taggart J. B., Hynes R. A., Prodöuhl P. A. and Ferguson A. 1992 A simplified protocol for routine total DNA isolation from salmonid fishes. J. Fish Biol. 40, 963–965.CrossRefGoogle Scholar
  15. Tan Z. J., Zhang T. Q., Lu C. Y., Li C. and Sun X. W. 2011 Development and characteristics of tri- and tetra-nucleotide microsatellites for silver carp (Hypophthalmichthys molitrix). J. Shanghai Ocean Univ. 20, 328–335.Google Scholar
  16. Vemireddy L. R., Archak S. and Nagaraju J. 2007 Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of Basmati rice (Oryza sativa). J. Agric. Food Chem. 55, 8112–8117.CrossRefGoogle Scholar
  17. Williams S. L. and Orth R. J. 1998 Genetic diversity and structure of natural and transplanted eelgrass populations in the Chesapeake and Chincoteague Bays. Estuaries 21, 118–128.CrossRefGoogle Scholar
  18. Yeh F. C., Yang R. C. and Boyle T. 1999 POPGENE version 1.32, Microsoft window-base software for population genetic analysis, a quick user’s guide. University of Alberta, Center for International Forestry Research, Alberta, Canada.Google Scholar
  19. Zhang J., Ma W. G., Wang W. M., Gui J. F. and Mei J. 2016 Parentage determination of yellow catfish (Pelteobagrus fulvidraco) based on microsatellite DNA markers. Aquacult. Int. 24, 567–576.CrossRefGoogle Scholar
  20. Zhou W., Wang J., Jin B. S., Gao T. X. and Song N. 2016 . J. Fish China 40, 1531–1541.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Wenjie Guo
    • 1
  • Chengtao Guo
    • 1
  • Yuhong Wang
    • 1
  • Weihua Hu
    • 1
  • Jie Mei
    • 1
    Email author
  1. 1.College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of AgricultureHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations