Advertisement

Journal of Genetics

, 98:23 | Cite as

Lateral transfer of organophosphate degradation (opd) genes among soil bacteria: mode of transfer and contributions to organismal fitness

  • Dayananda SiddavattamEmail author
  • Harshita Yakkala
  • Devyani Samantarrai
Review Article
  • 38 Downloads

Abstract

Genes encoding structurally independent phosphotriesterases (PTEs) are identified in soil bacteria. These pte genes, often identified on mobilizable and self-transmissible plasmids are organized as mobile genetic elements. Their dissemination through lateral gene transfer is evident due to the detection of identical organophosphate degradation genes among soil bacteria with little or no taxonomic relationship. Convergent evolution of PTEs provided selective advantages to the bacterial strain as they convert toxic phosphotriesters (PTs) into a source of phosphate. The residues of organophosphate (OP) compounds that accumulate in a soil are proposed to contribute to the evolution of PTEs through substrate-assisted gain-of-function. This review provides comprehensive information on lateral transfer of pte genes and critically examines proposed hypotheses on their evolution in the light of the short half-life of OPs in the environment. The review also proposes alternate factors that have possibly contributed to the evolution and lateral mobility of PTEs by taking into account their biology and analyses of pte genes in genomic and metagenomic databases.

Keywords

phosphotriesterases opd gene mpd gene lateral gene transfer molecular evolution 

Notes

Acknowledgements

DS received research grants from CSIR and DST, New Delhi. Department of Animal Biology is funded through DST-FIST level-II. The School of Life Science received special assistance through DBT-BUILDER programme.

References

  1. Ali M., Naqvi T. A., Kanwal M., Rasheed F., Hameed A. and Ahmed S. 2012 Detection of the organophosphate degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1. Ann. Microbiol. 62, 233–269.CrossRefGoogle Scholar
  2. Afriat-Jurnou L., Jackson C. J. and Tawfik D. S. 2012 Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 51, 6047–6055.CrossRefGoogle Scholar
  3. Afriat L., Roodveldt C., Manco G. and Tawfik D. S. 2006 The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45, 13677–13686.CrossRefGoogle Scholar
  4. Bergonzi C., Schwab M., Naik T., Daude D., Chabriere E. and Elias M. 2018 Structural and biochemical characterization of AaL, a quorum quenching lactonase with unusual kinetic properties. Sci. Rep. 8, 11262.CrossRefGoogle Scholar
  5. Chakka D., Gudla R., Madikonda A. K., Pandeeti E. V., Parthasarathy S., Nandavaram A. et al. 2015 The organophosphate degradation (opd) Island-borne esterase-induced metabolic diversion in Escherichia coli and its influence on p-Nitrophenol degradation. J. Biol. Chem. 290, 29920–29930.CrossRefGoogle Scholar
  6. Chaudhry G. R., Ali A. N. and Wheeler W. B. 1988 Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl. Environ. Microbiol. textbf 54, 288–293.PubMedPubMedCentralGoogle Scholar
  7. Cheng T. C, DeFrank J. J. and Rastogi V. K. 1999 Alteromonas prolidase for organophosphorus G-agent decontamination. Chem. Biol. Interact. 119-120, 455–462.CrossRefGoogle Scholar
  8. Colin P. Y., Kintses B., Gielen F., Miton C. M., Fischer G., Mohamed M. F. et al. 2015 Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008.CrossRefGoogle Scholar
  9. Davidi D., Longo L. M., Jablonska J., Milo R. and Tawfik D. S. 2018 A Bird’s-Eye view of enzyme evolution: chemical, physicochemical, and physiological considerations. Chem. Rev. 118, 8786–8797.CrossRefGoogle Scholar
  10. Dong Y. J., Bartlam M., Sun L., Zhou Y. F., Zhang Z. P., Zhang C. G. et al. 2005 Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J. Mol. Biol. 353, 655–663.CrossRefGoogle Scholar
  11. Elias M. and Tawfik D. S. 2012 Divergence and convergence in enzyme evolution: parallel evolution of paraoxonases from quorum-quenching lactonases. J. Biol Chem. 287, 11–20.CrossRefGoogle Scholar
  12. Harper L. L., McDaniel C. S., Miller C. E. and Wild J. R. 1988 Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl. Environ. Microbiol. 54, 2586–2589.PubMedPubMedCentralGoogle Scholar
  13. Horne I., Harcourt R. L., Sutherland T. D., Russell R. J. and Oakeshott J. G. 2002a Isolation of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol. Lett. 206, 51–55.CrossRefGoogle Scholar
  14. Horne I., Sutherland T. D., Harcourt R. L., Russell R. J. and Oakeshott J. G. 2002b Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68, 3371–3376CrossRefGoogle Scholar
  15. Horne I., Qiu X., Russell R. J. and Oakeshott J. G. 2003 The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiol. Lett. 222, 1–8.CrossRefGoogle Scholar
  16. Iyer R., Iken B. and Damania A. 2013 A comparison of organophosphate degradation genes and bioremediation applications. Environ. Microbiol. Rep. 5, 787–798.CrossRefGoogle Scholar
  17. Kawahara K, Tanaka A, Yoon J. and Yokota A. 2010 Reclassification of a parathione-degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis. J. Gen. Appl. Microbiol. 56, 249–255.CrossRefGoogle Scholar
  18. Khajamohiddin S., Babu P. S., Chakka D., Merrick M., Bhaduri A, Sowdhamini R. et al. 2006 A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551. Biochem. Biophys. Res. Commun. 351, 675–681.CrossRefGoogle Scholar
  19. Khersonsky O. and Tawfik D. S. 2010 Enzyme promiscuity: a mechanistic and evolutionary perspective. Ann. Rev. Biochem. 79, 471–505.CrossRefGoogle Scholar
  20. Liu H., Zhang J. J., Wang S. J., Zhang X. E. and Zhou N. Y. 2005 Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem. Biophy. Res. Commun. 334, 1107–1114.CrossRefGoogle Scholar
  21. Mandrich L. and Manco G. 2009 Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Biochemistry 48, 5602–5612.CrossRefGoogle Scholar
  22. McDaniel C. S. and Wild J. R. 1988 Detection of organophosphorus pesticide detoxifying bacterial colonies, using UV-photography of parathion-impregnated filters. Arch. Environ. Contamin. Toxicol. 17, 189–194.CrossRefGoogle Scholar
  23. Moran N. A. 2002 Microbial minimalism: genome reduction in bacterial pathogens. Cell. 108, 583–586.CrossRefGoogle Scholar
  24. Mulbry W. W., Kearney P. C., Nelson J. O. and Karns J. S. 1987 Physical comparison of parathion hydrolase plasmids from Pseudomonas diminuta and Flavobacterium sp. Plasmid. 18, 173–177.CrossRefGoogle Scholar
  25. Mulbry W. W. and Karns J. S. 1989 Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl. Environ. Microbiol. 55, 289–293.PubMedPubMedCentralGoogle Scholar
  26. Munnecke D. M. and Hsieh D. P. 1974 Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl. Microbiol. 28, 212–217.PubMedPubMedCentralGoogle Scholar
  27. Nojiri H., Shintani M. and Omori T. 2004 Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl. Microbiol. Biotechnol. 64, 154–174.CrossRefGoogle Scholar
  28. Pandeeti E. V., Chakka D., Pandey J. P. and Siddavattam D. 2011 Indigenous organophosphate-degrading (opd) plasmid pCMS1 of Brevundimonas diminuta is self-transmissible and plays a key role in horizontal mobility of the opd gene. Plasmid 65, 226–231.CrossRefGoogle Scholar
  29. Pandeeti E. V., Longkumer T., Chakka D., Muthyala V. R., Parthasarathy S., Madugundu A. K. et al. 2012 Multiple mechanisms contribute to lateral transfer of an organophosphate degradation (opd) island in Sphingobium fuliginis ATCC 27551. G3 (Bethesda) 2, 1541–1554.CrossRefGoogle Scholar
  30. Pao S. S., Paulsen I. T. and Saier M. H., Jr. 1998 Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34.Google Scholar
  31. Parthasarathy S., Parapatla H., Nandavaram A., Palmer T. and Siddavattam D. 2016 Organophosphate hydrolase is a lipoprotein and interacts with Pi-specific transport system to facilitate growth of Brevundimonas diminuta using OP insecticide as source of phosphate. J. Biol. Chem. 291, 7774–7785.CrossRefGoogle Scholar
  32. Parthasarathy S., Gudla R. and Siddavattam D. 2017a Evolution of phosphotriesterases (PTEs): how bacteria can acquire new degradative functions. Proc. Indian Natn. Sci. Acad. 83, 865-875.Google Scholar
  33. Parthasarathy S., Parapatla H. and Siddavattam D. 2017b Topological analysis of the lipoprotein organophosphate hydrolase from Sphingopyxis wildii reveals a periplasmic localisation. FEMS Microbiol. Lett. 364.Google Scholar
  34. Parthasarathy S., Azam S., Lakshman Sagar A., Narasimha Rao V, Gudla R., Parapatla H. et al. 2017c Genome-guided insights reveal organophosphate-degrading Brevundimonas diminuta as Sphingopyxis wildii and define its versatile metabolic capabilities and environmental adaptations. Genome Biol. Evol. 9, 77–81.PubMedGoogle Scholar
  35. Purg M., Pabis A., Baier F., Tokuriki N., Jackson C and Kamerlin S. C. 2016 Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase. Philos. Trans. A Math. Phys. Eng. Sci. 374.CrossRefGoogle Scholar
  36. Puyet A., del Solar G. H. and Espinosa M. 1988 Identification of the origin and direction of replication of the broad-host-range plasmid pLS1. Nucleic Acids Res. 16, 115–133.CrossRefGoogle Scholar
  37. Rhoads M. K, Hauk P., Gupta V., Bookstaver M. L., Stephens K, Payne G. F. 2018 Modification and assembly of a versatile lactonase for bacterial quorum quenching. Molecules 23, 341.CrossRefGoogle Scholar
  38. Russell R. J., Scott C., Jackson C. J., Pandey R., Pandey G., Taylor M. C. et al 2011 The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evol. Appl. 4, 225–248.CrossRefGoogle Scholar
  39. Serdar C. M., Gibson D. T., Munnecke D. M. and Lancaster J. H. 1982 Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl. Environ. Microbiol. 44, 246–249.PubMedPubMedCentralGoogle Scholar
  40. Sethunathan N. and Yoshida T. 1973 A Flavobacterium sp. that degrades diazinon and parathion. Canadian J. Microbiol. 19, 873–875.CrossRefGoogle Scholar
  41. Siddavattam D., Khajamohiddin S., Manavathi B., Pakala S. B. and Merrick M. 2003 Transposon-like organization of the plasmid-borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Appl. Environ. Microbiol. 69, 2533–2539.CrossRefGoogle Scholar
  42. Singh B., Kaur J. and Singh K. 2014 Microbial degradation of an organophosphate pesticide, malathion. Critical Rev. Microbiol. 40, 146–154.CrossRefGoogle Scholar
  43. Somara S. and Siddavattam D. 1995 Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem. Mol. Biol. Int. 36, 627–631.PubMedGoogle Scholar
  44. Tan H. M. 1999 Bacterial catabolic transposons. Appl. Microbiol. Biotechnol. 51, 1–12.CrossRefGoogle Scholar
  45. Tawfik D. S. 2006 Biochemistry. Loop grafting and the origins of enzyme species. Science 311, 475–476.CrossRefGoogle Scholar
  46. Toscano M. D., Woycechowsky K. J. and Hilvert D. 2007 Minimalist active-site redesign: teaching old enzymes new tricks. Angewandte Chemie. 46, 3212–3236.CrossRefGoogle Scholar
  47. Wei M., Zhang J. J., Liu H., Wang S. J., Fu H. and Zhou N. Y. 2009 A transposable class I composite transposon carrying mph (methyl parathion hydrolase) from Pseudomonas sp. strain WBC-3. FEMS Microbiol. Lett. 292, 85–91.CrossRefGoogle Scholar
  48. Yang H., Carr P. D., McLoughlin S. Y., Liu J. W., Horne I., Qiu X et al. 2003 Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Protein Eng. 16, 135–145.CrossRefGoogle Scholar
  49. Zhang R., Cui Z., Zhang X., Jiang J., Gu J. D. and Li S. 2006 Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17, 465–472.CrossRefGoogle Scholar
  50. Zhongli C., Shunpeng L. and Guoping F. 2001 Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl. Environ. Microbiol. 67, 4922–4925.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Dayananda Siddavattam
    • 1
    Email author
  • Harshita Yakkala
    • 1
  • Devyani Samantarrai
    • 1
  1. 1.Department of Animal Sciences, School of Life SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations