Journal of Genetics

, 98:20 | Cite as

Genomewide association study for C-reactive protein in Indians replicates known associations of common variants

  • Gauri Prasad
  • Anil K. Giri
  • Indico Consortium
  • Analabha Basu
  • Nikhil TandonEmail author
  • Dwaipayan BharadwajEmail author
Research Article


Elevated C-reactive protein (CRP) serves as an independent biomarker for acute and chronic inflammation, and is also associated with metabolic diseases. Genomewide loci regulating CRP level in Indian population, a high-risk group for metabolic illness, is unexplored. Therefore, we aimed to discover common polymorphisms associated with plasma CRP level in 4493 Indians of Indo-European origin using genomewide association study. Genomewide strong associations of two known intronic variants in hepatocyte nuclear factor-\(1\upalpha \) gene (HNF1A) were identified among Indian subjects. We also detected prior associations of several variants in/near metabolic and inflammatory process genes: APOC1, LEPR, CRP, HNF4A, IL6R and APOE with modest associations. This study confirms that Indians from Indo-European origin display similar core universal genetic factors for CRP levels.


C-reactive protein genomewide association study Indians metabolic diseases 



The authors are thankful to all the study participants and the members of INdian DIabetes COnsortium (INDICO) for their support in generation of data. This study was supported by grants provided by the Council of Scientific and Industrial Research (CSIR), Government of India through Centre for Cardiovascular and Metabolic Disease Research (CARDIOMED) project (Grant no. BSC0122-(13)). This study was also partially funded by the Department of Science and Technology, Government of India through PURSE II CDST/SR/PURSE PHASE II/11. GP and AKG acknowledge University Grants Commission (UGC), Government of India for Senior Research Fellowship.

Supplementary material

12041_2019_1065_MOESM1_ESM.docx (59 kb)
Supplementary material 1 (docx 58 KB)


  1. Benjamin E. J., Dupuis J., Larson M. G., Lunetta K. L., Booth S. L., Govindaraju D. R. et al. 2007 Genome-wide association with select biomarker traits in the Framingham heart study. BMC Med. Genet. 8, S11.CrossRefGoogle Scholar
  2. Black S., Kushner I. and Samols D. 2004 C-reactive protein. J. Biol. Chem. 279, 48487–48490.CrossRefGoogle Scholar
  3. Boyle A. P., Hong E. L., Hariharan M., Cheng Y., Schaub M. A., Kasowski M. et al. 2012 Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797.CrossRefGoogle Scholar
  4. Chambers J. C., Eda S., Bassett P., Karim Y., Thompson S. G., Gallimore J. R. et al. 2001 C-reactive protein, insulin resistance, central obesity, and coronary heart disease risk in Indian Asians from the United Kingdom compared with European whites. Circulation 104, 145–150.CrossRefGoogle Scholar
  5. Chandalia M., Cabo-Chan A. V., Devaraj S., Jialal I., Grundy S. M. and Abate N. 2003 Elevated plasma high-sensitivity C-reactive protein concentrations in Asian Indians living in the United States. J. Clin. Endocrinol. Metab. 88, 3773–3776.CrossRefGoogle Scholar
  6. Dehghan A., Dupuis J., Barbalic M., Bis J. C., Eiriksdottir G., Lu C. et al. 2011 Meta-analysis of genome-wide association studies in \(>\)80,000 subjects identifies multiple loci for C-reactive protein level. Circulation 123, 731–738.Google Scholar
  7. Dorajoo R., Li R., Ikram M. K., Liu J., Froguel P., Lee J. et al. 2013 Are C-reactive protein associated genetic variants associated with serum levels and retinal markers of microvascular pathology in Asian populations from Singapore? PLoS One 8, e67650.CrossRefGoogle Scholar
  8. Elliott P., Chambers J. C., Zhang W., Clarke R., Hopewell J. C., Peden J. F. et al. 2009 Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA 302, 37–48.CrossRefGoogle Scholar
  9. Fajans S. S., Bell G. I. and Polonsky K. S. 2001 Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 345, 971–980.CrossRefGoogle Scholar
  10. Ford E. S., Giles W. H., Myers G. L., Rifai N., Ridker P. M. and Mannino D. M. 2003 C-reactive protein concentration distribution among US children and young adults: findings from the National Health and Nutrition Examination Survey, 1999–2000. Clin. Chem. 49, 1353–1357.CrossRefGoogle Scholar
  11. Giri A. K., Khan N. M., Basu A., Tandon N., Scaria V. and Bharadwaj D. 2014 Pharmacogenetic landscape of clopidogrel in north Indians suggest distinct interpopulation differences in allele frequencies. Pharmacogenomics 15, 643–653.CrossRefGoogle Scholar
  12. INdian DIabetes Consortium 2011 INDICO: the development of a resource for epigenomic study of Indians undergoing socioeconomic transition. Hugo J. 5, 65–69.Google Scholar
  13. Khera A., McGuire D. K., Murphy S. A., Stanek H. G., Das S. R., Vongpatanasin W. et al. 2005 Race and gender differences in C-reactive protein levels. J. Am. Coll. Cardiol. 46, 464–469.CrossRefGoogle Scholar
  14. Khoo C. M., Sairazi S., Taslim S., Gardner D., Wu Y., Lee J. et al. 2011 Ethnicity modifies the relationships of insulin resistance, inflammation, and adiponectin with obesity in a multiethnic Asian population. Diabetes Care 34, 1120–1126.CrossRefGoogle Scholar
  15. Kocarnik J. M., Pendergrass S. A., Carty C. L., Pankow J. S., Schumacher F. R., Cheng I. et al. 2014 Multiancestral analysis of inflammation-related genetic variants and c-reactive protein in the population architecture using genomics and epidemiology study. Circ. Cardiovasc. Genet. 7, 178–188.CrossRefGoogle Scholar
  16. Kong M. and Lee C. 2013 Genetic associations with C-reactive protein level and white blood cell count in the KARE study. Int. J. Immunogenet. 40, 120–125.CrossRefGoogle Scholar
  17. Li S. P. and Goldman N. D. 1996 Regulation of human C-reactive protein gene expression by two synergistic IL-6 responsive elements. Biochemistry 35, 9060–9068.CrossRefGoogle Scholar
  18. Mahajan A., Tabassum R., Chavali S., Dwivedi O. P., Bharadwaj M., Tandon N. et al. 2009 High-sensitivity C- reactive protein levels and type 2 diabetes in urban North Indians. J. Clin. Endocrinol. Metab. 94, 2123–2127.CrossRefGoogle Scholar
  19. Mahajan A., Tabassum R., Chavali S., Dwivedi O. P., Chauhan G., Ghosh S. et al. 2011 Common variants in CRP and LEPR influence high sensitivity C-reactive protein levels in North Indians. PLoS One 6, e24645.CrossRefGoogle Scholar
  20. Mahajan A., Jaiswal A.,Tabassum R., Podder A., Ghosh S., Madhu S. V. et al. 2012 Elevated level of C-reactive protein as a risk factor for metabolic syndrome in Indians. Atherosclerosis 220, 275–281.CrossRefGoogle Scholar
  21. Montojo J., Zuberi K., Rodriguez H., Kazi F., Wright G., Donaldson S. L. et al. 2010 GeneMANIA cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 26, 2927–2928.CrossRefGoogle Scholar
  22. Okada Y., Takahashi A., Ohmiya H., Kumasaka N., Kamatani Y., Hosono N. et al. 2011 Genome-wide association study for C-reactive protein levels identified pleiotropic associations in the IL6 locus. Hum. Mol. Genet. 20, 1224–1231.CrossRefGoogle Scholar
  23. Pankow J. S., Folsom A. R., Cushman M., Borecki I. B., Hopkins P. N., Eckfeldt J. H. et al. 2001 Familial and genetic determinants of systemic markers of inflammation: the NHLBI family heart study. Atherosclerosis 154, 681–689.CrossRefGoogle Scholar
  24. Plomin R., Haworth C. M. and Davis O. S. 2009 Common disorders are quantitative traits. Nat. Rev. Genet. 10, 872–878.CrossRefGoogle Scholar
  25. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D. et al. 2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575.CrossRefGoogle Scholar
  26. Reiner A. P., Barber M. J., Guan Y., Ridker P. M., Lange L. A., Chasman D. I. et al. 2008 Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1\(\alpha \) are associated with C-reactive protein. Am. J. Hum. Genet. 82, 1193–1201.CrossRefGoogle Scholar
  27. Reiner A. P., Beleza S., Franceschini N., Auer P. L., Robinson J. G., Kooperberg C. et al. 2012 Genome-wide association and population genetic analysis of c-reactive protein in African American and Hispanic American women. Am. J. Hum. Genet. 91, 502–512.CrossRefGoogle Scholar
  28. Ridker P. M., Wilson P. W. F. and Grundy S. M. 2004 Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation 109, 2818–2825.CrossRefGoogle Scholar
  29. Ridker P. M., Pare G., Parker A., Zee R. Y., Danik J. S., Buring J. E. et al. 2008 Loci related to metabolic-syndrome pathways including LEPR, HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: the women’s genome health study. Am. J. Hum. Genet. 82, 1185–1192.CrossRefGoogle Scholar
  30. Rojo-Martinez G., Soriguer F., Colomo N., Calle A., Goday A., Bordiú E. et al. 2013 Factors determining high-sensitivity C-reactive protein values in the Spanish population. study. Eur. J. Clin. Invest. 43, 1–10.CrossRefGoogle Scholar
  31. Shen R., Fan J. B., Campbell D., Chang W., Chen J., Doucet D. et al. 2005 High-throughput SNP genotyping on universal bead arrays. Mutat. Res. 573, 70–82.CrossRefGoogle Scholar
  32. Tabassum R., Mahajan A., Chauhan G., Dwivedi O. P., Dubey H., Sharma V. et al. 2011 No association of TNFRSF1B variants with type 2 diabetes in Indians of Indo-European origin. BMC Med. Genet. 12, 110.CrossRefGoogle Scholar
  33. Tabassum R., Chauhan G., Dwivedi O. P., Mahajan A., Jaiswal A., Kaur I. et al. 2013 Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes 62, 977–986.CrossRefGoogle Scholar
  34. Turner S. D. 2014 qqman: an R package for visualizing GWAS results using Q–Q and Manhattan plots. BioRxiv.Google Scholar
  35. Ward L. D. and Kellis M. 2012 HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934.CrossRefGoogle Scholar
  36. Welter D., MacArthur J., Morales J., Burdett T., Hall P., Junkins H. et al. 2014 The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006.CrossRefGoogle Scholar
  37. Wessel J., Moratorio G., Rao F., Mahata M., Zhang L., Greene W. et al. 2007 C-reactive protein, an ‘intermediate phenotype’ for inflammation: human twin studies reveal heritability, association with blood pressure and the metabolic syndrome, and the influence of common polymorphism at catecholaminergic/beta-adrenergic pathway loci. J. Hypertens. 25, 329–343.CrossRefGoogle Scholar
  38. Willer C. J., Li Y. and Abecasis G. R. 2010 METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191.CrossRefGoogle Scholar
  39. Wu Y., McDade T. W., Kuzawa C. W., Borja J., Li Y., Adair L. S. et al. 2012 Genome-wide association with C-reactive protein levels in CLHNS: evidence for the CRP and HNF1A loci and their interaction with exposure to a pathogenic environment. Inflammation 35, 574–583.CrossRefGoogle Scholar
  40. Yang J., Lee S. H., Goddard M. E. and Visscher P. M. 2011 GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Genomics and Molecular Medicine UnitCSIR-Institute of Genomics and Integrative BiologyNew Delhi India
  2. 2.Academy of Scientific and Innovative ResearchCSIR-Institute of Genomics and Integrative Biology CampusNew DelhiIndia
  3. 3.National Institute of Biomedical GenomicsNetaji Subhas Sanatorium (Tuberculosis Hospital)KalyaniIndia
  4. 4.Department of Endocrinology and MetabolismAll India Institute of Medical SciencesNew DelhiIndia
  5. 5.Systems Genomics Laboratory, School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations