Advertisement

Journal of Genetics

, 98:25 | Cite as

Transcriptome profiling of four candidate milk genes in milk and tissue samples of temperate and tropical cattle

  • Olanrewaju B. MorenikejiEmail author
  • Mabel O. Akinyemi
  • Mathew Wheto
  • Olawale J. Ogunshola
  • Adebanjo A. Badejo
  • Clifford A. Chineke
Research Article
  • 27 Downloads

Abstract

The expression of four genes involved in milk regulation and production in bovine milk and tissue samples profiled using quantitative PCR to identify differential gene expression. Our goal focussed on the differential mRNA expression of milk genes (K-CN, PRL, BLG and PIT-1) in milk samples and different tissues from four different breeds of ecologically adapted and geographically separated cattle species. The mRNA expression identified the four milk genes understudied most upregulated in mammary gland and milk samples as compared with other tissues. The expression of PIT-1 gene in the brain identified to have influenced the expression of PRL and K-CN in the mammary and milk samples. Among the four genes, PRL had the highest mRNA expression (144.19-fold change) in Holstein followed by K-CN with 100.89-fold change, while the smallest relative expression for most genes in this study are in the range from 0.79 to 7.35-fold difference. White Fulani cattle was identified to have a higher expression for K-CN, PRL and BLG compared with Angus and Ndama cattle, while Holstein cattle is on top of the list on the basis of the gene expression and gene regulation for all the four genes in this study. Also, White Fulani and Holstein are in the same cluster based on their mRNA expression for milk genes. Our data showed the first evidence of the molecular identification of indigenous White Fulani cattle of having potential for higher milk production.

Keywords

cattle milk genes gene expression quantitative polymerase chain reaction 

References

  1. Abby T., Mike B. and Harjinder S. 2009 Milk proteins: from expression to food. Am. J. Hum. Biol. 21, 852–860.CrossRefGoogle Scholar
  2. Ahmadi M., Mohammadi Y., Darmani-kuhi H., Osfoori R. and Qanbari S. 2008 Association of milk protein genotypes with production traits and somatic cell count of Holstein cows. J. Biol. Sci. 8, 1231–1235.CrossRefGoogle Scholar
  3. Alfonso E., Rojas R., Herrera J. G., Ortega M. E., Lemus C., Cortez C. et al. 2012 Polymorphism of the prolactin (PRL) and its relationship with milk production in American Swiss cattle. Afr. J. Biotech. 11, 7338–7343.Google Scholar
  4. Ankur C., Madhu T., Satyendra P. S., Deepak S., Sumit K., Rakesh G. et al. 2015 PIT-1 gene polymorphism with milk production traits in Sahiwal cattle. Indian J. Anim. Sci. 85, 610–612.Google Scholar
  5. Baik M., Etchebarne B. E., Bong J. and Vander Haar M. J. 2009 Gene expression profiling of liver and mammary tissues of lactating dairy cows. Asian-Aust. J. Anim. Sci. 22, 871–884.CrossRefGoogle Scholar
  6. Banda M., Bommineni A., Thomas R. A., Luckinbill L. S. and Tucker J. D. 2007 Evaluation and validation of house-keeping genes in response to ionizing radiation and chemical exposure for normalizing RNA expression in real-time PCR. Mutat. Res./Genet. Toxicol. Environ. Mutagen 649, 126 –134.CrossRefGoogle Scholar
  7. Barber R. D., Harmer D. W., Coleman R. A. and Clark B. J. 2005 GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genomics 21, 389–395.CrossRefGoogle Scholar
  8. Bayat S. M. and Houdebine L. M. 1993 Effect of various protein kinase inhibitors o the induction of milk protein gene expression by prolactin. Mol. Cell Endocrinol. 92, 127–134.CrossRefGoogle Scholar
  9. Bona G., Paracchini R., Giordano M. and Pomigliano-Richardi P. 2004 Genetic defects in GH synthesis and secretion. Eur. J. Endocrinol. 151, 53–59.Google Scholar
  10. Cane K. N., Arnould J. P. and Nicholas K. R. 2005 Characterisation of proteins in the milk of fur seals. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 141, 111 – 120.CrossRefGoogle Scholar
  11. Cánovas A., Rincon G., Islas-Trejo A., Wickramasinghe S. and Medrano J. F. 2010 SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm. Genome 21, 592–598.CrossRefGoogle Scholar
  12. Cohen L. E., Wondisford F. E. and Radovick S. 1997 Role of Pit-1 in the gene expression of growth hormone, prolactin and thyrotropin. Endocrinol. Metab. Clin. North Am. 25, 523–540.CrossRefGoogle Scholar
  13. Cole J. B., vanRaden P. M., O’Conell J. R., van Tassell C. P. and Sonstergard T. S. 2009 Distribution and location of genetic effects for dairy traits. J. Dairy Sci. 92, 2931–2946.CrossRefGoogle Scholar
  14. Cui X., Hou Y., Yang S., Xie Y., Zhang S., Zhang Y. et al. 2014 Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genomics 15, 226–241.CrossRefGoogle Scholar
  15. Daetwyler H. D., Pong-Wong R., Villanueva B. and Woolliams J. A. 2010 The impact of genetic architecture on genome-wide evaluation methods. Genetics 185, 1021–1031.CrossRefGoogle Scholar
  16. Farrell H. M. Jr., Jimenez-Flores R., Bleck G. T., Brown E. M., Butler J. E., Creamer L. K. et al. 2004 Nomenclature of the proteins of cows’ milk sixth revision. J. Dairy Sci. 87, 1641–1674.CrossRefGoogle Scholar
  17. Forni S., Aguilar I. and Misztal I. 2011 Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet. Sel. Evol. 43, 1–7.CrossRefGoogle Scholar
  18. Fu J., Wolfs M. G., Deelen P., Westra H. J., Fehrmann R. S., Te Meerman G. J. et al. 2012 Unraveling the regulatory mechanisms under l Robert tissue-dependent genetic variation of gene expression. PLoS Genet. 8 e1002431.CrossRefGoogle Scholar
  19. Girard C. and Matte J. 2005. Folic acid and vitamin B12 requirements of dairy cows: A concept to be revised. Livestock Prod. Sci. 98, 123–133.CrossRefGoogle Scholar
  20. Graulet B., Matte J. J., Desrochers A., Doepel L., Palin M. F. and Girard C. L. 2007 Effects of dietary supplements of folic acid and vitamin \(\text{ B }_{12}\) on metabolism of dairy cows in early lactation. J. Dairy Sci. 90, 3442 – 3455.CrossRefGoogle Scholar
  21. Hansen P. J. 2004 Physiological and cellular adaptations of zebu cattle to thermal stress. Ani. Reproduct. Sci. 82, 349–360.CrossRefGoogle Scholar
  22. Hayes B. J., Pryce J., Chamberlain A. J., Bowman P. J. and Goddard M. E. 2010 Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet. 61, 100 –139.Google Scholar
  23. Hodne K., Haug T. M. and Weltzien F. A. 2010 Single-cell qPCR on dispersed primary pituitary cells—an optimized protocol. BMC Mol. Biol. 11, 82.CrossRefGoogle Scholar
  24. Hou M., Li Q. and Huang T. 2009 Microarray analysis of gene expression profiles in the bovine mammary gland during lactation. Sci. China Life Sci. 53, 248–256.CrossRefGoogle Scholar
  25. Jiménez-Montero J. A., González-Recio O. and Alenda R. 2011 Genotyping strategies for genomic selection in small dairy cattle populations. Animal 6, 1216–1224.CrossRefGoogle Scholar
  26. Kuljeet S., Richards A. E., Kara M. S. and Kerst S. 2010 Egipenetic regulation of milk production in dairy cows. J. Mammary Gland Biol. Neoplasia 15, 101–112.CrossRefGoogle Scholar
  27. Lacetera N., Bernabucci U., Scalia D., Basiricò L., Morera P. and Nardone, A. 2006 Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. J. Dairy Sci. 89, 4606–4612.CrossRefGoogle Scholar
  28. Laurie E. C., Fredric E. W. and Sally R. 1996 Role of PIT-1 in the gene expression of growth hormone, prolactin and thyrotropin. Endocrinol. Metab. Clin. North Am. 25, 523–540.CrossRefGoogle Scholar
  29. Lin C., Lin S. C., Chang C. P. and Rosenfeld M. G. 1994 Pit-1 dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature 360, 765–768.CrossRefGoogle Scholar
  30. Liu W., Lauladerkind S. J. F., Hayman G. T., Wang S., Nigam R., Smith J. R. et al. 2015 Onto mate: a test-mining tool aiding curation at the rat genome database. Database 1–8.Google Scholar
  31. Medrano J. F., Rincon G. and Islas-Trejo A. 2010 Comparative analysis of bovine milk and mammary gland transcriptome using RNA-seq. In 9th World congress on genetics applied to livestock production. Leipzig, German, August 1–6, paper no. 0852.Google Scholar
  32. Mehmannavaz Y., Amirinia C., Bonyadi M. and Torshizi R. V. 2009 Effects of bovine prolactin gene polymorphism within exon 4 on milk related traits and genetic trends in Iranian Holstein bulls. African J. Biotechnol. 8, 4797–4801.Google Scholar
  33. Paula-Lopes F. F., Chase C. C. Jr., Al-katanani Y. M., Kriinger C. E., Rivera R. M., Tekin S. et al. 2003 Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction 125, 285–294.Google Scholar
  34. Raiz M. N., Malik N. A., Nasreen F. and Qureshi J. A. 2008 Molecular marker assisted study of kappa-casein gene in Nili-Ravi (Buffalo) breed of Pakistan. Pakistan Vet. J. 28, 103–106.Google Scholar
  35. Ran L., Pier L. D. and Eveline M. I. 2016 Comparative Analysis of the miRNome of bovine milk fat, whey and cells. PLoS One 11, 1–12.Google Scholar
  36. Rhoads M. L., Rhoads R. P., VanBaale M. J., Collier R. J., Sanders S. R., Weber W. J. et al. 2009 Effects of heat stress and plane of nutrition on lactating Holstein cows: I. production, metabolism and aspects of circulating somatotropin. J. Dairy Sci. 92, 1986–1997.CrossRefGoogle Scholar
  37. Rhodes S. J., Chen R., DiMattia G. E., Scully K. M., Kalla K. A., Lin S. C. et al. 1993 A tissue-specific enhancer confers Pit-1 dependent morphogen inducibility and autoregulation on the Pit-1 gene. Gene Devel. 7, 913–932.CrossRefGoogle Scholar
  38. Robert R. K., Mikael K. and Ales T. 2010 Statistical aspects of quantitative real-time PCR experiment design. Methods 50, 231–236.CrossRefGoogle Scholar
  39. Rosen R., Brown C., Heiman J., Leiblum S., Meston C. M., Shabsigh R. et al. 2000 The female sexual function index (FSFI): A multidimensional self-report instrument for the assessment of female sexual function. J. Sex Marital Therapy 26, 191–208.CrossRefGoogle Scholar
  40. Sheehy P. A., Della-Vedova J. J., Nicholas K. R. and Wynn P. C. 2004 Hormone dependent milk protein gene expression in bovine mammary explants from biopsies at different stage of pregnancy. J. Dairy Res. 71, 135–140.CrossRefGoogle Scholar
  41. Shwartz G., Rhoads M. L., VanBaale M. J., Rhoads R. P. and Baumgard L. H. 2009 Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J. Dairy Sci. 92, 935–942.CrossRefGoogle Scholar
  42. Smolenski G., Haines S., Kwan F. Y., Bond J., Farr V., Davis S. R. et al. 2007 Characterization of host defense proteins in milk using a proteomic approach. J. Proteome Res. 6, 207–215.CrossRefGoogle Scholar
  43. Steinfelder H. J., Hauser P., Nakayama Y., Radovick S., McClaskey J. H., Taylor T. et al. 1991 Thyrotropin-releasing hormone regulation of human TSHß expression: role of a pituitary specific transcription factor (Pit-1/GHF-1) and potential interaction with a thyroid hormone-inhibitory element. Proc. Natl. Acad. Sci. USA 88, 3130–3134.CrossRefGoogle Scholar
  44. Ursula K. and Ken K. Y. 2016 Pituitary physiology and diagnostic evaluation. In Williams textbook of endocrinology, (ed. S. Melmed, K. S. Polonsky, P. R. Larsen and H. M. Kronenberg), 13th edition, pp. 176–231. Elsevier, Amsterdam.Google Scholar
  45. Veerkamp R. F., Beerda B. and Vander L. T. 2003 Effects of genetic selection for milk yield on energy balance, levels of hormones, and metabolites in lactating cattle, and possible links to reduced fertility. Livestock Prod. Sci. 83, 257–275.CrossRefGoogle Scholar
  46. Wellmann R. and Bennewitz J. 2011 The contribution of dominance to the understanding of quantitative genetic variation. Genet. Res. 93, 139–154.CrossRefGoogle Scholar
  47. Whelehan C. J., Reidy A. B., Meade K. G., Eckersall P. D., Chapwanya A., Narcianda F. et al. 2014 Characterization and expression profile of bovinecathelicidin gene receptoire in mammary tissue. BMC Genomics 15, 128–140.CrossRefGoogle Scholar
  48. Wickramasinghe S., Hua S., Rincon G., Islas-Trejo A., German J. B., Lebrilla C. B. et al. 2011 Transcriptome Profiling of bovine milk oligosaccharide metabolism genes using RNA-Sequencing. PLoS One 6, e18895.CrossRefGoogle Scholar
  49. Wickramasinghe S., Rincon G., Islas-Trejo A. and Medrano J. F. 2012 Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics 13, 45.CrossRefGoogle Scholar
  50. Yang J., Jiang J., Liu X., Wang H., Guo G., Zhang Q. et al. 2015 Differential expression of genes in milk of dairy cattle during lactation. Anim. Genet. 47, 174–180.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Olanrewaju B. Morenikeji
    • 1
    • 2
    Email author
  • Mabel O. Akinyemi
    • 2
    • 3
  • Mathew Wheto
    • 4
  • Olawale J. Ogunshola
    • 1
  • Adebanjo A. Badejo
    • 5
  • Clifford A. Chineke
    • 1
  1. 1.Department of Animal Production and HealthFederal University of TechnologyAkureNigeria
  2. 2.Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life SciencesCornell UniversityIthacaUSA
  3. 3.Department of Animal ScienceUniversity of IbadanIbadanNigeria
  4. 4.Department of Animal Breeding and GeneticsFederal University of AgricultureAbeokutaNigeria
  5. 5.Department of Food Science and TechnologyFederal University of TechnologyAkureNigeria

Personalised recommendations