Journal of Genetics

, 98:17 | Cite as

Haplotype diversity in medically important red scorpion (Scorpiones: Buthidae: Hottentotta tamulus) from India

  • Vivek Suranse
  • Nitin S. Sawant
  • D. B. Bastawade
  • Neelesh DahanukarEmail author
Research Note


The medically important Indian red scorpion, Hottentotta tamulus, is one of the most poisonous scorpions of Indian subcontinent. We studied the haplotype diversity in eight populations of H. tamulus based on mitochondrial cytochrome oxidase subunit I (COI) partial gene sequence. Analyses revealed 22 haplotypes with a haplotype diversity of 0.941 and nucleotide diversity of 0.023. For the first two codon positions both transition and transversion types of substitutions were equally likely and the test for neutrality was not rejected. However, codon substitution pattern indicated that the gene has experienced purifying selection. Model-based clustering method indicated that the eight populations form three groups that correspond to high, moderate and low rainfall areas, indicating that there is biogeographical separation of haplotypes. Populations from three groups formed distinct clades in maximum likelihood analysis and median joining genetic network and were statistically supported by low within group and high among group variation in analyses of molecular variance. We provide the first account of haplotype diversity in Indian red scorpions and their biogeographical separation.


phylogenetics biogeography cytochrome oxidase subunit I median joining network analyses of molecular variance 



VS and ND are thankful to the Director and the Chair, Biological Sciences, for providing the infrastructural facilities at Indian Institute of Science Education and Research, Pune. We are grateful to Dr Deepak Apte, Director; Rahul Khot, incharge Natural History Collection; and Vithoba Hegde, senior field assistant, for their help during registration of specimens at Bombay Natural History Society (BNHS), Mumbai. We are thankful to Dr Sanjay Molur for helping in registration of specimens in the Wildlife Information Liaison Development (WILD), Coimbatore. We are thankful to Dr Anand Padhye and Shauri Sulakhe for helping in registration of specimens in the museum collection of Institute of Natural History Education and Research (INHER), Pune. We are thankful to Pradeep Kumkar, Durgesh Pangarkar, Somnath Kumbhar, Ishaan Pahade, Chaitanya Risbud, Adarsh Kaul and Shruti Paripatyadar for their help in field work. This work was partially supported by Department of Science and Technology, DST-INSPIRE Research Grant (IFA12-LSBM-21) to ND. We are thankful to an anonymous reviewer for critical comments on earlier draft of the manuscript.


  1. Badhe R. V., Thomas A. B., Harer S. L., Deshpande A. D., Salvi N. and Waghmare A. 2006 Intraspecific variation in protein pattern of red scorpion (Mesobuthus tamulus, coconsis, pocock) venoms from Western and Southern India. J. Venom. Anim. Toxins Incl. Trop. Dis. 12, 612–619.Google Scholar
  2. Bandelt H., Forster P. and Röhl A. 1999 Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.CrossRefGoogle Scholar
  3. Bawaskar H. S. and Bawaskar P. H. 1999 Management of scorpion sting. Heart 82, 253–254.CrossRefGoogle Scholar
  4. Brites-Neto J. and Duarte K. M. R. 2015 Modeling of spatial distribution for scorpions of medical importance in the São Paulo State, Brazil. Vet. World 8, 823.CrossRefGoogle Scholar
  5. Delport W., Poon A. F., Frost S. D. W. and Pond S. L. K. 2010 Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26, 2455–2457.CrossRefGoogle Scholar
  6. Edgar R. C. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.CrossRefGoogle Scholar
  7. Excoffier L. and Lischer H. E. 2010 Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567.CrossRefGoogle Scholar
  8. Excoffier L., Smouse P. E. and Quattro J. M. 1992 Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.PubMedPubMedCentralGoogle Scholar
  9. Folmer O., Black M., Hoeh W., Lutz R. and Vrijenhoek R. 1994 DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299.Google Scholar
  10. Hammer Ø., Harper D. A. T. and Ryan P. D. 2001 Past: Paleontological Statistics Software Package for education and data analysis. Palaeontol. Electron. 4, 1–9.Google Scholar
  11. Husemann M., Schmitt T., Stathi I. and Habel J. C. 2012 Evolution and radiation in the scorpion Buthus elmoutaouakili Lourenço and Qi 2006 (Scorpiones: Buthidae) at the foothills of the Atlas Mountains (North Africa). J. Hered. 103, 221–229.CrossRefGoogle Scholar
  12. Kankonkar R. C., Kulkurni D. G. and Hulikavi C. B. 1998 Preparation of a potent anti-scorpion-venom-serum against the venom of red scorpion (Buthus tamalus). J. Postgrad. Med. 44, 85–92.Google Scholar
  13. Koch L. E. 1977 The taxonomy, geographic distribution and evolutionary radiation of Australo-Papuan scorpions. Rec. West. Aust. Mus. 5, 83–367.Google Scholar
  14. Kovařík F. 2007 A revision of the genus Hottentotta Birula, 1908, with descriptions of four new species (Scorpiones, Buthidae). Euscorpius 58, 1–107.Google Scholar
  15. Kumar S., Stecher G. and Tamura K. 2016 MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  16. Kumkar P., Katwate U., Raghavan R. and Dahanukar N. 2016 Balitora chipkali, a new species of stone loach (Teleostei: Balitoridae) from the northern Western Ghats of India, with a note on the distribution of B. laticauda. Zootaxa 4138, 155–170.CrossRefGoogle Scholar
  17. Lanfear R., Calcott B., Ho S. Y. and Guindon S. 2012 PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701.CrossRefGoogle Scholar
  18. Leigh J. W. and Bryant D. 2015 POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116.CrossRefGoogle Scholar
  19. Librado P. and Rozas J. 2009 DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.CrossRefGoogle Scholar
  20. Miller A. L., Makowsky R. A., Formanowicz D. R., Prendini L. and Cox C. L. 2014 Cryptic genetic diversity and complex phylogeography of the boreal North American scorpion, Paruroctonus boreus (Vaejovidae). Mol. Phylogenet. Evol. 71, 298–307.CrossRefGoogle Scholar
  21. Minh B. Q., Nguyen M. A. T. and von Haeseler A. 2013 Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195.CrossRefGoogle Scholar
  22. Murthy K. R. K. and Zare M. A. 1998 Effect of Indian red scorpion (Mesobuthus tamulus concanesis, Pocock) venom on thyroxine and triiodothyronine in experimental acute myocarditis and its reversal by species specific antivenom. Indian J. Exp. Biol. 36, 16–21.Google Scholar
  23. Newton K. A., Clench M. R., Deshmukh R., Jeyaseelan K. and Strong P. N. 2007 Mass fingerprinting of toxic fractions from the venom of the Indian red scorpion, Mesobuthus tamulus: biotope-specific variation in the expression of venom peptides. Rapid Commun. Mass Spectrom. 21, 3467–3476.CrossRefGoogle Scholar
  24. Nguyen L. T., Schmidt H. A., von Haeseler A. and Minh B. Q. 2015 IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274.CrossRefGoogle Scholar
  25. Pond S. L. K. and Frost S. D. W. 2005 Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222.CrossRefGoogle Scholar
  26. Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  27. Puillandre N., Lambert A., Brouillet S. and Achaz G. 2012 ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877.CrossRefGoogle Scholar
  28. Rambaut A. 2009 FigTree. v1. 3.1. Available: (Accessed 2 Nov. 2016).
  29. Ratnayake R. M. U. K. B., Kumanan T. and Selvaratnam G. 2016 Acute myocardial injury after scorpion (Hottentotta tamulus) sting. Ceylon Med. J. 61, 86–87.CrossRefGoogle Scholar
  30. Schwarz G. 1978 Estimating the dimension of a model. Ann. Stat. 6, 461–464.CrossRefGoogle Scholar
  31. Simon C., Frati F., Beckenbach A., Crespi B., Liu H. and Flook P. 1994 Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann. Entomol. Soc. America 87, 651–701.CrossRefGoogle Scholar
  32. Sousa P., Froufe E., Alves P. C. and Harris D. J. 2010 Genetic diversity within scorpions of the genus Buthus from the Iberian Peninsula: mitochondrial DNA sequence data indicate additional distinct cryptic lineages. J. Arachnol. 38, 206–211.CrossRefGoogle Scholar
  33. Sousa P., Harris D. J., Froufe E. and Meijden A. 2012 Phylogeographic patterns of Buthus scorpions (Scorpiones: Buthidae) in the Maghreb and South-Western Europe based on CO1 mtDNA sequences. J. Zool. 288, 66–75.CrossRefGoogle Scholar
  34. Sousa P., Froufe E., Harris D. J., Alves P. C. and Meijden A. V. D. 2011 Genetic diversity of Maghrebian Hottentotta (Scorpiones: Buthidae) scorpions based on CO1: new insights on the genus phylogeny and distribution. African Invertebr. 52, 135–143.CrossRefGoogle Scholar
  35. Strong P. N., Mukherjee S., Shah N., Chowdhary A. and Jeyaseelan K. 2015 Scorpion venom research around the world: Indian Red Scorpion. In Scorpion Venoms, Toxinology IV (ed. P. Gopalakrishnakone, L. D. Possani, E. F. Schwartz and R. C. Rodríguez de la Vega), pp. 369–382. Springer Netherlands.Google Scholar
  36. Suranse V., Sawant N. S., Paripatyadar S. V., Krutha K., Paingankar M. S., Padhye A. D. et al. 2017 First molecular phylogeny of scorpions of the family Buthidae from India. Mitochondrial DNA Part A 28, 606–611.CrossRefGoogle Scholar
  37. Tikader B. K. and Bastawade D. B. 1983 Fauna of India: Scorpions, Scorpionida: Arachnida, volume III. Zoological Survey of India, Culcutta.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research (IISER)PashanIndia
  2. 2.Wildlife Information Liaison Development (WILD) SocietyCoimbatoreIndia
  3. 3.Institute of Natural History Education and Research (INHER)KothrudIndia

Personalised recommendations