Advertisement

Journal of Genetics

, 98:8 | Cite as

Genomewide association study of C-peptide surfaces key regulatory genes in Indians

  • Khushdeep Bandesh
  • Gauri Prasad
  • Anil Kumar Giri
  • V. Saroja Voruganti
  • Nancy F. Butte
  • Shelley A. Cole
  • Anthony G. Comuzzie
  • Indico Consortium
  • Nikhil TandonEmail author
  • Dwaipayan BharadwajEmail author
Research Article

Abstract

Insulin is a commonly used measure of pancreatic \(\upbeta \)-cell function but exhibits a short half-life in the human body. During biosynthesis, insulin release is accompanied by C-peptide at an equimolar concentration which has a much higher plasma half-life and is therefore projected as a precise measure of \(\upbeta \)-cell activity than insulin. Despite this, genetic studies of metabolic traits have neglected the regulatory potential of C-peptide for therapeutic intervention of type-2 diabetes. The present study is aimed to search genomewide variants governing C-peptide levels in genetically diverse and high risk population for metabolic diseases—Indians. We performed whole genome genotyping in 877 healthy Indians of Indo-European origin followed by replication of variants with \(P \le 1 \times 10^{-3}\) in an independent sample-set of 1829 Indians. Lead-associated signals were also tested in-silico in 773 Hispanics. To secure biological rationale for observed association, we further carried out DNA methylation quantitative trait loci analysis in 233 Indians and publicly available regulatory data was mined. We discovered novel lncRNA gene AC073333.8 with the strongest association with C-peptide levels in Indians that however missed genomewide significance. Also, noncoding genes, RP1-209A6.1 and RPS3AP5; protein gene regulators, ZNF831 and ETS2; and solute carrier protein gene SLC15A5 retained robust association with C-peptide after meta-analysis. Integration of methylation data revealed ETS2 and ZNF831 single-nucleotide polymorphisms as significant meth-QTLs in Indians. All genes showed reasonable expression in the human lung, signifying alternate important organs for C-peptide biology. Our findings mirror polygenic nature of C-peptide where multiple small-effect size variants in the regulatory genome principally govern the trait biology.

Keywords

C-peptide genetic variants genomewide association study Hispanics Indians meth-QTLs 

Notes

Acknowledgements

The authors are grateful to all the study participants. We acknowledge the support and participation of members of the INDICO consortium in data generation. We also thank VIVA LA FAMILIA study for providing the summary statistics for meta-analysis. KB acknowledges CSIR for Senior Research Fellowship (CSIR-SRF). GP acknowledges UGC for Senior Research Fellowship. This work was supported by the Council of Scientific and Industrial Research (CSIR), Government of India through Centre for Cardiovascular and Metabolic Disease Research (CARDIOMED) project (grant no. BSC0122-(14)). This work was also funded by the Department of Science and Technology-PURSE- II (DST/SR/PURSE PhaseII/11).

Supplementary material

12041_2018_1046_MOESM1_ESM.docx (270 kb)
Supplementary material 1 (docx 269 KB)

References

  1. Alexander S. P. H., Kelly E., Marrion N., Peters J. A., Benson H. E., Faccenda E. et al. 2015 The concise guide to pharmacology 2015/16: transporters. Br. J. Pharmacol. 172, 6110–6202.CrossRefGoogle Scholar
  2. Butte N. F., Cai G., Cole S. A. and Comuzzie A. G. 2006 VIVA LA FAMILIA Study: genetic and environmental contributions to childhood obesity and its comorbidities in the Hispanic population. Am. J. Clin. Nutr. 84, 646–654.CrossRefGoogle Scholar
  3. Chan W. B., Tong P. C., Chow C. C., So W. Y., Ng M. C., Ma R. C. et al. 2004 The associations of body mass index, C-peptide and metabolic status in Chinese type 2 diabetic patients. Diabet. Med. 21, 349–353.CrossRefGoogle Scholar
  4. Chen C. H., Tsai S. T., Chuang J. H., Chang M. S., Wang S. P. and Chou P. 1995 Population-based study of insulin, C-peptide, and blood pressure in Chinese with normal glucose tolerance. Am. J. Cardiol. 76, 585–588.CrossRefGoogle Scholar
  5. Chima R. S., LaMontagne T., Piraino G., Hake P. W., Denenberg A. and Zingarelli B. 2011 C-peptide, a novel inhibitor of lung inflammation following hemorrhagic shock. Am. J. Physiol.: Lung Cell. Mol. Physiol. 300, L730–L739.Google Scholar
  6. Comuzzie A. G., Cole S. A., Laston S. L., Voruganti V. S., Haack K., Gibbs R. A. et al. 2012 Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One 7, e51954.CrossRefGoogle Scholar
  7. Faber O. K., Hagen C., Binder C., Markussen J., Naithani V. K., Blix P. M. et al. 1978 Kinetics of human connecting peptide in normal and diabetic subjects. J. Clin. Investig. 62, 197–203.CrossRefGoogle Scholar
  8. Fox C. S., Liu Y., White C. C., Feitosa M., Smith A. V., Heard-Costa N. et al. 2012 Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 8, e1002695.CrossRefGoogle Scholar
  9. Fransen E., Bonneux S., Corneveaux J. J., Schrauwen I., Di-Berardino F., White C. H. et al. 2015 Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. Eur. J. Hum. Genet. 23, 110–115.CrossRefGoogle Scholar
  10. Giri A. K., Banerjee P., Chakraborty S., Kauser Y., Undru A., Roy S. et al. 2016 Genome-wide association study of uric acid in Indian population and interaction of identified variants with type 2 diabetes. Sci. Rep. 6, 21440.CrossRefGoogle Scholar
  11. Giri A. K., Bharadwaj S., Banerjee P., Chakraborty S., Parekatt V., Rajashekar D. et al. 2017 DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics. Mol. Genet. Genomics 292, 655–662.CrossRefGoogle Scholar
  12. Hayes M. G., Urbanek M., Hivert M. F., Armstrong L. L., Morrison J., Guo C. et al. 2013 Identification of HKDC1 and BACE2 as genes influencing glycemic traits during pregnancy through genome-wide association studies. Diabetes 62, 3282–3291.CrossRefGoogle Scholar
  13. Hills C. E. and Brunskill N. J. 2009 C-peptide and its intracellular signaling. Rev. Diabet. Stud. 6, 138–147.CrossRefGoogle Scholar
  14. Hvid H., Fendt S. M., Blouin M. J., Birman E., Voisin G., Svendsen A. M. et al. 2012 Stimulation of MC38 tumor growth by insulin analog X10 involves the serine synthesis pathway. Endocr.-Relat. Cancer 19, 557–574.CrossRefGoogle Scholar
  15. INdian DIabetes COnsortium 2011 INDICO: the development of a resource for epigenomic study of Indians undergoing socioeconomic transition. HUGO J. 5, 65–69.Google Scholar
  16. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret G. B., Munroe P. B., Rice K. M., Bochud M., Johnson A. D. et al. 2001 Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109.Google Scholar
  17. Jörnvall H., Lindahl E., Astorga-Wells J., Lind J., Holmlund A., Melles E. et al. 2010 Oligomerization and insulin interactions of proinsulin C-peptide: threefold relationships to properties of insulin. Biochem. Biophys. Res. Commun. 391, 1561–1566.CrossRefGoogle Scholar
  18. Levy D., Ehret G. B., Rice K., Verwoert G. C., Launer L. J., Dehghan A. et al. 2009 Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687.CrossRefGoogle Scholar
  19. Lindahl E., Nyman U., Zaman F., Palmberg C., Cascante A., Shafqat J. et al. 2010 Proinsulin C-peptide regulates ribosomal RNA expression. J. Biol. Chem. 285, 3462–3469.CrossRefGoogle Scholar
  20. Locke A. E., Kahali B., Berndt S. I., Justice A. E., Pers T. H., Day F. R. et al. 2015 Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206.CrossRefGoogle Scholar
  21. Nica A. C., Montgomery S. B., Dimas A. S., Stranger B. E., Beazley C., Barroso I. et al. 2010 Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 6, e1000895.CrossRefGoogle Scholar
  22. Plomin R., Haworth C. M. A. and Davis O. S. P. 2009 Common disorders are quantitative traits. Nat. Rev. Genet. 10, 872–878.CrossRefGoogle Scholar
  23. Purohit P. and Mathur R. 2013 Hypertension association with serum lipoproteins, insulin, insulin resistance and C-peptide: unexplored forte of cardiovascular risk in hypothyroidism. N. Am. J. Med. Sci. 5, 195–201.CrossRefGoogle Scholar
  24. Rigler R., Pramanik A., Jonasson P., Kratz G., Jansson O. T., Nygren P.-Å. et al. 1999 Specific binding of proinsulin C-peptide to human cell membranes. Proc. Natl. Acad. Sci. 96, 13318–13323.CrossRefGoogle Scholar
  25. Roshandel D., Gubitosi-Klug R., Bull S. B., Canty A. J., Pezzolesi M. G., King G. L. et al. 2018 Meta-genome-wide association studies identify a locus on chromosome 1 and multiple variants in the MHC region for serum C-peptide in type 1 diabetes. Diabetologia 61, 1098–1111.CrossRefGoogle Scholar
  26. Seidell J. C., Björntorp P., Sjöström L., Kvist H. and Sannerstedt R. 1990 Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metabolism 39, 897–901.CrossRefGoogle Scholar
  27. Sherva R., Tripodis Y., Bennett D. A., Chibnik L. B., Crane P. K., de-Jager P. L. et al. 2013 Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease. Alzheimer’s Dementia 10, 45–52.CrossRefGoogle Scholar
  28. Tabassum R., Mahajan A., Chauhan G., Dwivedi O. P., Dubey H., Sharma V. et al. 2011 No association of TNFRSF1B variants with type 2 diabetes in Indians of Indo-European origin. BMC Med. Genet. 12, 110.CrossRefGoogle Scholar
  29. Tabassum R., Chauhan G., Dwivedi O. P., Mahajan A., Jaiswal A., Kaur I. et al. 2013 Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes 62, 977–986.CrossRefGoogle Scholar
  30. The GTEx Consortium 2015 The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660.Google Scholar
  31. Tong J., Fujimoto W. Y., Kahn S. E., Weigle D. S., McNeely M. J., Leonetti D. L. et al. 2005 Insulin, C-peptide, and leptin concentrations predict increased visceral adiposity at 5- and 10-year follow-ups in nondiabetic Japanese Americans. Diabetes 54, 985–990.CrossRefGoogle Scholar
  32. Wahren J., Kallas A. and Sima A. A. F. 2002 The clinical potential of C-peptide replacement in type 1 diabetes. Diabetes 61, 761–772.CrossRefGoogle Scholar
  33. Yang J., Benyamin B., McEvoy B. P., Gordon S., Henders A. K., Nyholt D. R. et al. 2010 Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569.CrossRefGoogle Scholar
  34. Zhong Z., Kotova O., Davidescu A., Ehren I., Ekberg K., Jornvall H. et al. 2004 C-peptide stimulates \({\text{ Na }}^{+}\), \({\text{ K }}^{+}\)-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells. Cell. Mol. Life Sci. 61, 2782–2790.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Genomics and Molecular Medicine UnitCSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
  2. 2.Academy of Scientific and Innovative ResearchCSIR-Institute of Genomics and Integrative Biology CampusNew DelhiIndia
  3. 3.Department of Nutrition and UNC Nutrition Research InstituteUniversity of North Carolina at Chapel HillKannapolisUSA
  4. 4.USDA/ARS Children’s Nutrition Research Center, Department of PediatricsBaylor College of MedicineHoustonUSA
  5. 5.Department of GeneticsTexas Biomedical Research InstituteSan AntonioUSA
  6. 6.Department of Endocrinology and MetabolismAll India Institute of Medical SciencesNew DelhiIndia
  7. 7.Systems Genomics Laboratory, School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations