Advertisement

Complex effects of Ayurvedic formulation: Guduchi and Madhuyashti on different components of life history may elude the elixir effect

  • Surabhi Singh
  • Bodhisatta Nandy
  • Madhu G. Tapadia
Research Article
  • 9 Downloads

Abstract

Formulations from the traditional Indian medicine, Ayurveda, have long been considered to have potent life-style-enhancing effects, possibly by their effect(s) on key life-history attributes. Although several studies have reported beneficial effects of these formulations on different components of life history, few have investigated their concurrent influence on various life-history traits. Here, we report the results of an investigation showing the effect of two well-known Ayurvedic formulations, Guduchi and Madhuyashti, on fecundity and longevity of Drosophila melanogaster. Flies were either grown (i.e., larval exposure) and/or maintained (i.e., adult exposure) on standard food supplemented with 0.5% Guduchi or 0.5% Madhuyashti. It was observed that the longevity of adult flies of both sexes was not affected on feeding Guduchi food, but fecundity of the females was greatly enhanced. Fecundity was also found to be affected by the adult food and whether their mates were grown on Guduchi or normal food. Madhuyashti, on the other hand, significantly reduced mean longevity and had a stimulatory effect on female fecundity. This fecundity enhancing effect however seemed to be mediated through its effect on the males. Interestingly, much of these effects interacted with age in a complex way, making it difficult to generalize the overall effect of these formulations on the reproductive output of the flies. Our study underlines the importance of evaluating the interacting effects of these (and similar) formulations on a range of life-history traits in a holistic way to understand their utility better.

Keywords

Guduchi Madhuyashti life-history traits fecundity longevity Ayurveda 

Notes

Acknowledgements

This work was supported by grants from the Department of Science and Technology, Science and Engineering Research Board (SERB), Government of India, New Delhi, to Madhu G. Tapadia and JRF to Surabhi Singh. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We also acknowledge Arya Vaidya Sala, Kotakkal, Kerela for providing the Ayurvedic formulations. We also thank the editor and anonymous reviewers for their valuable comments which has improved the clarity of the manuscript to a great extent.

Supplementary material

12041_2018_1045_MOESM1_ESM.docx (852 kb)
Supplementary material 1 (docx 851 KB)

References

  1. Altun D., Ayar A., Uysal H., Kara A. A. and Ünal E. L. 2010 Extended longevity of Drosophila melanogaster by water and ethanol extracts of Stachys lavandulifolia. Pharma Biol. 48, 1291–1296.CrossRefGoogle Scholar
  2. Balasubramani S. P., Mohan J., Chatterjee A., Patnaik E., Kukkupuni K. S., Nongthumba U. and Venkatasubramanian P. 2014 Pomegranate juice enhances healthy lifespan in Drosophila melanogaster: an exploratory study. Front. Public Health 2, 2–9.CrossRefGoogle Scholar
  3. Bisset N. G. and Nwaiwu J. 1983 Quaternary alkaloids of Tinospora species. Planta Med. 48, 275–279.CrossRefPubMedGoogle Scholar
  4. Bouletreau-Merle J., Allemand R., Cohet Y. and David J. R. 1982 Reproductive strategy in Drosophila melanogaster: significance of a genetic divergence between temperate and tropical populations. Oecologia 53, 323–329.CrossRefPubMedGoogle Scholar
  5. Boyd O., Weng P., Sun X., Alberico T., Laslo M., Obenland D. M. et al. 2011 Nectarine promotes longevity in Drosophila melanogaster. Free Radic. Biol. Med. 50, 1669–1678.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bretman A., Westmancoat J. D., Gage M. J. G. and Chapman T. 2013 Costs and benefits of lifetime exposure to mating rivals in male Drosophila melanogaster. Evolution 67, 2413–2422.CrossRefPubMedGoogle Scholar
  7. Chandrashekara K. T. and Shakarad M. N. 2011 Aloe vera or resveratrol supplementation in larval diet delays adult aging in the fruit fly, Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci. 66, 965–971.CrossRefPubMedGoogle Scholar
  8. Chandrashekara K. T., Popli S. and Shakarad M. N. 2011 Curcumin enhances parental reproductive lifespan and progeny viability in Drosophila melanogaster. Age 36, 1–14.Google Scholar
  9. Damle M. 2014 Glycyrrhiza glabra (Liquorice) – a potent medicinal herb. Int. J. Herb. Med. 2, 132–136.Google Scholar
  10. Dwivedi V. and Lakhotia S. C. 2016 Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster. J. Biosci. 41, 697-711.CrossRefPubMedGoogle Scholar
  11. Flatt T. 2011 Survival costs of reproduction in Drosophila. Exp. Gerontol. 46, 369–375.CrossRefPubMedGoogle Scholar
  12. Flatt T. and Heyland A. 2011 Mechanism of life history evolution: the genetics and physiology of life history traits and tradeoffs, chapter 1, pp. 3–9, 1st edition. Oxford University Press.Google Scholar
  13. Forbes A. J., Spradling A. C., Ingham P. W. and Lin H. 1996 The role of segment polarity genes during early oogenesis in Drosophila. Development 122, 3283–3294.PubMedGoogle Scholar
  14. Gangan V. D., Pradhan P., Sipahimalani A. T. and Banerji A.1994 Cordifolisides A, B, C: Norditerpene furan glycosides from Tinospora cordifolia. Phytochemistry 37, 781–786.CrossRefPubMedGoogle Scholar
  15. Ghosal S. and Vishwakarma R. A. 1997 Tinocordiside, a new rearranged cadinane sesquiterpene glycoside from Tinospora cordifolia. J. Nat. Prod. 60, 839–841.CrossRefGoogle Scholar
  16. Goel B., Pathak N., Nim D. K., Singh S. K., Dixit R. K. and Chaurasia R. 2014 Evaluation of analgesic activity of Guduchi (Tinospora cordifolia) using animal model. J. Clin. Diagn. Res. 8, HC01–HC04.Google Scholar
  17. Gupta R. and Sharma V. 2011 Ameliorative effects of Tinospora cordifolia root extract on histopathological and biochemical changes induced by aflatoxin-b (1) in mice kidney. Toxicol Int. 18, 94–98.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jafari M., Zarban A., Pham S. and Wang T. 2008 Rosa damascena decreased mortality in adult Drosophila. J. Med. Food 11, 9–13.CrossRefPubMedGoogle Scholar
  19. Klepsatel P., Gáliková M., De Maio N., Ricci S., Schlotterer C. and Flatt T. 2013 Reproductive and post-reproductive life history of wild-caught Drosophila melanogaster under laboratory conditions. J. Evol. Biol. 26, 1508–1520.CrossRefPubMedGoogle Scholar
  20. Kumar S., Verma N. S., Pande D. and Srivastava P. S. 2000 In vitro regeneration and screening of berberine in Tinospora cordifolia. J. Med. Arom Plant Sci. 22, 61.Google Scholar
  21. Kumar R., Gupta K., Saharia K., Pradhan D. and Subramaniam J. R. 2013 Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Ann.Neurosci. 20, 13–16.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lobell A. S., Kaspari R. R., Negron Y. L. S. and Harbison S. T. 2017 The genetic architecture of ovariole number in Drosophila melanogaster: genes with major, quantitative, and pleiotropic effects. Genes Genomes Genet. 7, 2391–2403.Google Scholar
  23. Maurya R. and Handa S. S. 1998 Tinocordifolin, a sesquiterpene from Tinospora cordifolia. Phytochemistry 49, 1343–1346.CrossRefGoogle Scholar
  24. Maurya R., Wazir V., Tyagi A. and Kapil R. S. 1995 Clerodane diterpenoids from Tinospora cordifolia. Phytochemistry 38, 559–561.CrossRefGoogle Scholar
  25. Maurya R., Wazir V., Tyagi A. and Kapil R. S. 1996 Cordifoliosides A and B, two new phenylpropene disaccharides from Tinospora cordifolia possessing immunostimulant activity. Nat. Prod. Lett. 8, 7–10.CrossRefGoogle Scholar
  26. Maurya R., Dhar K. L. and Handa S. S. 1997 A sesquiterpene glucoside from Tinospora cordifolia. Phytochemistry 44, 749–750.CrossRefGoogle Scholar
  27. Mendes C. C. and Mirth C. K. 2016 Stage-specific plasticity in ovary size is regulated by insulin/insulin-like growth factor and ecdysone signaling in Drosophila. Genetics 202, 703–719.CrossRefPubMedGoogle Scholar
  28. Mittal J., Sharma M. M. and Batra A. 2014 Tinospora cordifolia: a multipurpose medicinal plant –a review. J. Med. Plants Stud. 2, 32–47.Google Scholar
  29. Mkvel-Ninio M., Terracol R., Salles’ C., Vincentc A. and Payrec F. C. 1994 Ovo, a Drosophila gene required for ovarian development, is specifically expressed in the germline and shares most of its coding sequences with shavenbaby, a gene involved in embryo patterning. Mech. Dev. 149, 83–95.Google Scholar
  30. Nylin S. and Gotthard K. 1998 Plasticity in life-history traits. Annu. Rev. Entomol. 43, 63–83.CrossRefPubMedGoogle Scholar
  31. Partridge L. and Fowler K. 1992 Direct and correlated responses to selection on age at reproduction inDrosophila melanogaster. Evolution 46, 76–91.CrossRefPubMedGoogle Scholar
  32. Patel S. S., Shah R. S. and Goyal R. K. 2009 Antihyperglycemic, anti-hyperlipidemic and antioxidant effects of Dihar, a poly herbal Ayurvedic formulation in streptozotocin induced diabetic rats. Indian J. Exp. Biol. 47, 564–570.PubMedGoogle Scholar
  33. Pathak P., Prasad B. R. G., Murthy N. A. and Hegde S. N. 2011 The effect of Emblica officinalis diet on lifespan, sexual behavior, and fitness characters in Drosophila melanogaster. Ayub 32, 279–284.Google Scholar
  34. Patwardhan B. 2014 Bridging Ayurveda with evidence-based scientific approaches in medicine. EPMA J. 5, 2–7.CrossRefGoogle Scholar
  35. Patwardhan B., Mutalik G. and Tillu G. 2015 Integrative approaches for health: biomedical research. Ayurveda and Yoga Elsevier/Academic Press, London.Google Scholar
  36. Prasad N. G. and Joshi A. 2003 What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J. Genet. 82, 45–76.CrossRefPubMedGoogle Scholar
  37. Prowse N. and Partridge L. 1997 The effects of reproduction on longevity and fertility in male Drosophila melanogaster. J. Insect Physiol. 43, 501–512.CrossRefPubMedGoogle Scholar
  38. Qudrat-I-Khuda M., Khaleque A. and Ray N. 1964 Tinospora cordifolia I. Constituents of the plant fresh from the field. Sci. Res. (Dacca) 1, 177–183.Google Scholar
  39. Reznick D. N., Rodd F. H. and Cardenas M. 1996 Life history evolution in guppies (Poecilia reticulate poeciliidae). IV. Parallelism in life history phenotypes. Am. Nat. 147, 319–338.CrossRefGoogle Scholar
  40. R’kha S., Moreteau B., Coyne J. A. and David J. R. 1997 Evolution of a lesser fitness trait: egg production in the specialist Drosophila sechellia. Genet Res. 69, 17–23.Google Scholar
  41. Roff D. 1993 Evolution of life history: theory and analysis, chapter 1, pp. 8–10, 1st edition. Springer.Google Scholar
  42. Rose M. R., Passananti H. B. and Matos M. 2004 Methuselah flies: a case study in the evolution of aging, chapter 1, pp. 3–9, 1st edition. World Scientific Publishing.Google Scholar
  43. Ruohola H., Bremer K. A., Baker D., Swedlow J. R., Jan L. Y. and Jan Y. N. 1991 Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell 66, 433–449.CrossRefPubMedGoogle Scholar
  44. Singh R. H. 2010 Exploring issues in the development of Ayurvedic research methodology. J. Ayurveda Integrative Med. 1, 91–95.CrossRefGoogle Scholar
  45. Singh S. S., Pandey S. C., Srivastava S., Gupta V. S., Patro B. and Ghosh A. C. 2003 Chemistry and medicinal properties of Tinospora cordifolia (Guduchi). Indian J. Pharmacol. 35, 83–91.Google Scholar
  46. Stearns S. C. 1992 The evolution of life histories, chapter 1, pp. 6–9, 1st edition. Oxford University Press.Google Scholar
  47. Suter B., Romberg L. M. and Steward R. 1989 Bicaudal-D, a Drosophila gene involved in developmental asymmetry: localized transcript accumulation in ovaries and sequence similarity to myosin heavy chain tail domains. Genes Dev. 3, 1957–1968.CrossRefPubMedGoogle Scholar
  48. Vieira C., Pasyukova E. G., Zeng Z. B., Hackett J. B., Lyman R. F. and Mackay T. F. C. 2000 Genotype–environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics 154, 213–227.PubMedPubMedCentralGoogle Scholar
  49. Wazir V., Maurya R. and Kapil R. S. 1995 Cordioside, a clerodane furano diterpene glucoside from Tinospora cordifolia. Phytochemistry 38, 447–449.CrossRefGoogle Scholar
  50. Wigby S., Sirot L. K., Linklater J. R., Buehner N., Calboli F. C. F., Bretman A. 2009 Seminal fluid protein allocation and male reproductive success. Curr. Biol. 19, 751–757.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wilson M. A., Shukitt-Hale B., Kalt W., Ingram D. K., Joseph J. A. and Wolkow C. A. 2006 Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5, 59–68.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wolfner M. F. 2009 Battle and ballet: molecular interactions between the sexes in Drosophila. J. Hered. 100, 399–410.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zou S., Carey J. R., Liedo P., Ingram D. K., Yu B. and Ghaedian R. 2010 Prolongevity effects of an oregano and cranberry extract are diet dependent in the Mexican fruit fly (Anastrepha ludens). J. Gerontol. A Biol. Sci. Med. Sci. 65, 41–50.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Cytogenetics Laboratory, Department of ZoologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Indian Institute of Science Education and Research BerhampurGanjamIndia

Personalised recommendations