Advertisement

Mapping QTL controlling agronomic traits in a doubled haploid population of winter oilseed rape (Brassica napus L.)

  • Farshad Fattahi
  • Barat Ali Fakheri
  • Mahmood Solouki
  • Christian Möllers
  • Abbas Rezaizad
Research Article
  • 12 Downloads

Abstract

Identification of superior alleles for agronomic traits in genetic resources of oilseed rape (Brassica napus L.) would be useful for improving the performance of locally adapted cultivars in Iran. The objective of the present work was to analyse the genetic variation and inheritance of important agronomic traits in a doubled haploid population derived from a cross between two German oilseed rape cultivars, Sansibar and Oase. Field experiments were performed in 2016–2017 with 200 doubled haploid lines and the parental genotypes applying an alpha-lattice design with two replicates. Phenological traits were recorded during the cultivation period and at maturity, seed yield, yield components and seed quality traits were determined. Significant genetic variation was found in most of the traits and heritabilities ranged from medium (48.5%) for days to end of flowering to high (92.6%) for oil content. A molecular marker linkage map was used to map 36 QTL for different traits on 17 linkage groups. Between three and four QTL were identified for each seed yield, seed weight, oil and protein content. Some of the plant material and positive QTL alleles identified for agronomic traits may be useful for improving those characters in locally adapted cultivars in Iran.

Keywords

genetic resources oil content QTL mapping yield yield components 

References

  1. Amar S., Becker H. C. and Möllers C. 2009 Genetic variation in phytosterol content of winter rapeseed (Brassica napus L.) and development of NIRS calibration equations. Plant Breed. 128, 78–83.CrossRefGoogle Scholar
  2. Abd El-Mohsen A. A. and Abo-Hegazy S. R. 2013 Comparing the relative efficiency of two experimental designs in wheat field trials. Sci. Res. Rev. J. 1, 101–109.Google Scholar
  3. Bagheri H., Pino-del-Carpio D., Hanhart C., Bonnema G., Keurentjes J. and Aarts M. G. M. 2013 Identification of seed-related QTL in Brassica rapa. Spanish. J. Agri. Res. 11, 1085–1093.CrossRefGoogle Scholar
  4. Burns M. J., Barnes S. R., Bowman J. G., Clarke M. H. E., Werner C. P. and Kearsey M. J. 2003 QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity 90, 39–48.CrossRefPubMedGoogle Scholar
  5. Carré P. and Pouzet A. 2014 Rapeseed market, worldwide and in Europe. OCL 21, pp. D102.  https://doi.org/10.1051/ocl/2013054.CrossRefGoogle Scholar
  6. Chen J., Wang B., Zhang Y., Yue X., Li Z. and Liu K. 2017 High-density ddRAD linkage and yield-related QTL mapping delimits a chromosomal region responsible for oil content in rapeseed (Brassica napus L.). Breed. Sci. 67, 296–306.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Delourme R., Falentin C., Fomeju B. F. Boillot M., Lassalle G., André I. et al. 2013 High-density SNP based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genome 14, 120.CrossRefGoogle Scholar
  8. Ding G., Zhao Z., Liao Y., Hu Y., Shi L., Long Y. and Xu F. 2012 Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann. Botany 109, 747–759.CrossRefGoogle Scholar
  9. Faraji F. 2013 The role of yield components to determine seed yield of canola (Brassica napus L.) in Gonbad area. J. Plant. Product. 20, 217–234 (In Persian).Google Scholar
  10. Fletcher R. S., Mullen J. L., Heiliger A. and McKay J. K. 2014 QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J. Exp. Botany. 66, 245–256.CrossRefGoogle Scholar
  11. Geng X., Jiang C., Yang J., Wang L., Wu X. and Wei W. 2016 Rapid identification of candidate genes for seed weight using the SLAF-Seq method in Brassica napus. PLoS One ,  https://doi.org/10.1371/journal.pone.0147580.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gu J., Chao H., Wang H., Li Y., Li D., Xiang J. et al. 2017 Identification of the relationship between oil body morphology and oil content by microstructure comparison combining with QTL analysis in Brassica napus. Front. Plant. Sci. 7, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  13. He Y., Wu D., Wei D., Fu Y., Cui Y., Dong H. et al. 2017 GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Sci. Rep. 7, 15971.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang X. Q., Huang T., Hou G. Z., Li, L., Hou Y. and Lu Y. H. 2016 Identification of QTLs for seed quality traits in rapeseed (Brassica napus L.) using recombinant inbred lines (RILs). Euphytica 210, 1–16.CrossRefGoogle Scholar
  15. Kao C. H., Zeng Z. B. and Teasdale R. D. 1999 Multiple interval mapping for quantitative trait loci. Genetics 152, 1203–1216.PubMedPubMedCentralGoogle Scholar
  16. Kazemeini S. A., Edalat M., Shekoofa A. and Hamidi R. 2010 Effects of nitrogen and plant density on rapeseed (Brassica napus L.) yield and yield components in southern Iran. J. Appl. Sci. 10, 1461–1465.CrossRefGoogle Scholar
  17. Kimber D. and Mcgregor D. I. 1995 Brassica oilseeds-production and utilization. CAB. Inter. Wallingford, UK.Google Scholar
  18. Li F., Chen B., Xu K., Gao G., Yan G., Qiao J. et al. 2016 A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant. Sci . 242, 169–177.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liu S., Fan C., Li J., Cai G., Yang Q., Wu J. et al. 2016a A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor. Appl. Genet. 129, 1203–1215.CrossRefGoogle Scholar
  20. Liu H., Du D., Guo S., Xiao L., Zhao Z., Zhao Z. et al. 2016b QTL analysis and the development of closely linked markers for days to flowering in spring oilseed rape (Brassica napus L.). Mol. Breed. 36, 52.Google Scholar
  21. Mei D. S., Wang H., Hu Q. and Li Y. C. 2009 QTL analysis on plant height and flowering time in Brassica napus. Plant Breed. 128, 458–465.CrossRefGoogle Scholar
  22. Möllers C. and Schierholt A. 2002 Genetic variation of palmitate and oil content in a winter oilseed rape doubled haploid population segregating for oleate content. Crop. Sci. 42, 379–384.CrossRefGoogle Scholar
  23. Parkin I., Sharpe A. G., Keith D. J. and Lydiate D. J. 1995 Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38, 1122–1131.CrossRefPubMedGoogle Scholar
  24. Patterson H. D. and Williams E. R. 1976 A new class of resolvable incomplete block designs. Biometrika 63, 83–90.CrossRefGoogle Scholar
  25. Quijada P. A., Udall J. A., Lambert B. and Osborn T. C. 2006 Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor. Appl. Genet. 113, 549–561.CrossRefPubMedGoogle Scholar
  26. Rahman H., Harwood J. and Weselake R. 2013 Increasing seed oil content in Brassica species through breeding and biotechnology. Lipid. Technol. 25, 182–185.CrossRefGoogle Scholar
  27. Raman H., Raman R., Eckermann P. Coombes N., Manoli S. Zou X. et al. 2013 Genetic and physical mapping of flowering time loci in oilseed rape (Brassica napus.). Theor. Appl. Genet. 126, 119–132.CrossRefPubMedGoogle Scholar
  28. Rezaizad A., Mohammadi V. A., Zali A., Zeinali H., Mardi M. and Delourme R. 2010 Mapping QTLs for some agronomic traits in rapeseed (Brassica napus L.). Iranian. J. Field. Crop. Sci. 40, 133–142 (In Persian).Google Scholar
  29. Rezaizad A., Mohammadi V. A., Zali A., Zeinali H. and Mardi M. 2012 Study of important agronomic traits and their relationships under normal and drought stress conditions in doubled haploid lines of oilseed rape. Iranian. J. Field. Crop. Sci. 42, 683–694 (In Persian).Google Scholar
  30. Schiessl S., Iniguez-Luy I., Qian W. and Snowdon R. J. 2015 Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genomics 16, 737.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Shufen Z., Tingdong F., Jiacheng Z., Jianping W., Yancheng W., Chaozhi M. et al. 2007 QTL mapping and epistasis analysis for plant height and height to the first branch in rapeseed (Brassica napus L.). BIOTECHNOLOGY: Gene Clon. Func. Anal. IRC Proceedings, 12th IRC Wuhan China, 1, 232–235.Google Scholar
  32. Teh L. and Möllers C. 2016 Genetic variation and inheritance of phytosterol and oil content in a doubled haploid population derived from the winter oilseed rape Sansibar \(\times \) Oase cross. Theor. Appl. Genet. 129, 181–199.CrossRefGoogle Scholar
  33. Tunçtürk M. and Çiftçi V. 2007 Relationships between yield and some yield components in rapeseed (Brassica napus ssp. oleifera L.)    cultivars by using correlations and path analysis. Pak. J. Bot. 39, 81–84.Google Scholar
  34. Voorrips R. E. 2002 MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Heredity. 93, 77–78.CrossRefGoogle Scholar
  35. Wang N., Qian W., Suppanz I., Wei L., Mao B., Long Y. et al. 2011 Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J. Exp. Botany. 62, 5641–5658.CrossRefGoogle Scholar
  36. Wang S., Basten C. J. and Zeng Z. B. 2012 Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.Google Scholar
  37. Weir B. 2008 The Biology of Brassica napus L. (canola). Department of Health and Aging Office of the Gene Technology Regulator. Australian Governmment.Google Scholar
  38. Xiao Y., Liu H., Wu L., Warburton M. and Yan J. 2017 Genome-wide studies in maize: praise and stargaze. Mol. Plant. 10, 359–374.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yan X., Li Y., Wang N. J., Jin R., Chen Y. M., Qian L. W. et al. 2011 Mapping of QTLs controlling content of fatty acid composition in rapeseed (Brassica napus). Genes & Genomics 33, 365–371.CrossRefGoogle Scholar
  40. Yang Yi., Shen Y., Li S., Ge X. and Li Z. 2017 High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front. Plant. Sci. 8, 1512.  https://doi.org/10.3389/fpls.2017.01512.CrossRefGoogle Scholar
  41. Zhao J., Becker H. C., Zhang D., Zhang Y. and Ecke W. 2006 Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor. Appl. Genet. 113, 33–38.CrossRefPubMedGoogle Scholar
  42. Zheng M., Peng C., Liu H., Min Tang M., Yang H., Li X. et al. 2017 Genome- wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.) Front. Plant. Sci. 8, 1246.Google Scholar
  43. Zhou L., Li Y., Hussain N., Li Z., Wu D. and Jiang L. 2016 Allelic variation of BnaC.TT2.a and its association with seed coat color and fatty acids in rapeseed (Brassica napus L.). PLoS One ,  https://doi.org/10.1371/journal.pone.0146661.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Farshad Fattahi
    • 1
  • Barat Ali Fakheri
    • 1
  • Mahmood Solouki
    • 1
  • Christian Möllers
    • 2
  • Abbas Rezaizad
    • 3
  1. 1.Department of Biotechnology and Plant BreedingUniversity of ZabolZabolIran
  2. 2.Department of Crop ScienceGeorg-August-Universität GöttingenGöttingenGermany
  3. 3.Crop and Horticultural Sciences Research Department, Kermanshah Agricultural and Natural Resources Research and Education CenterAREEOKermanshahIran

Personalised recommendations