Journal of Genetics

, Volume 97, Issue 4, pp 1039–1046 | Cite as

Dobzhansky’s concept of genetic coadaptation: Drosophila ananassae is an exception to this concept

  • Bashisth N. SinghEmail author
Review Article


Dobzhansky was the first to show that the inversion polymorphism in Drosophila pseudoobscura is subject to natural selection and is a device to cope with the diversity of environments. His extensive work on D. pseudoobscura has revealed interesting phenomena of population genetics. In continuation of his work on this species, he constructed a number of homozygous lines for different gene arrangements in the third chromosome, and while employing these lines in intrapopulation and interpopulation crosses, he quantified the fitness of inversion homokaryotypes and heterokaryotypes. Interestingly, his results showed that heterokaryotypes formed by chromosomes originating from the same geographic area exhibited superiority over the corresponding homokaryotypes. However, superiority of heterokaryotypes was lost in the crosses when chromosomes were derived from different localities. Based on these results, Dobzhansky suggested the concept of genetic coadaptation. According to this concept, ‘in each locality, the chromosomes with different gene arrangements are mutually adjusted or coadapted to yield highly fit inversion heterozygotes through long continued natural selection. However, this adaptive superiority of inversion heterozygotes breaks down in interracial hybridization experiments when two gene arrangements are derived from different localities’. This concept has received experimental evidence in its favour on the basis of work done in other species of Drosophila, such as D. willistoni, D. paulistorum, D. pavani and D. bipectinata. In all these species, interracial hybridization led to the loss of superiority of inversion heterozygotes. Further, it has been suggested that coadapted polygenic complexes contained in the chromosomes are disrupted as a result of recombination in interstrain crosses. This concept was also tested in D. ananassae, a cosmopolitan and domestic species commonly found in India, while employing three cosmopolitan inversions exhibiting heterotic buffering. In interstrain crosses involving monomorphic and polymorphic strains due to three cosmopolitan inversions, the persistence of heterosis was observed, which does not support the above-mentioned hypothesis of Dobzhansky. Thus, evidence for coadaptation is lacking in natural populations of D. ananassae, which is considered as an exception to the Dobzhansky’s concept of genetic coadaptation. Thus, heterotic buffering associated with the three cosmopolitan inversions in D. ananassae is not populational heterosis; rather, it appears to be simple luxuriance.


genetic coadaptation Drosophila species inversion polymorphism Dobzhansky’s concept Drosophila ananassae 



We thank the anonymous reviewers for their helpful comments on the original draft of the manuscript. We also thank Dr Lee Moore, Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA for careful and critical reading of the manuscript.


  1. Banerjee R. and Singh B. N. 1996 Inversion polymorphism in natural populations of Drosophila bipectinata. Cytobios 87, 31–43.PubMedGoogle Scholar
  2. Barker J. S. F. 1979 Inter-locus interaction: a review of experimental evidence. Theor. Pop. Biol. 16, 323–346.CrossRefGoogle Scholar
  3. Bock I. R. 1971 Intra and interspecific chromosomal inversions in the Drosophila bipectinata species complex. Chromosoma 34, 206–2299.CrossRefPubMedGoogle Scholar
  4. Bock I. R. and Wheeler M. R. 1972 The melanogaster species group. Univ. Texas Publ. 7213, 1–102.Google Scholar
  5. Brncic D. 1961a Integration of the genotype in geographic populations of Drosophila pavani. Evolution 15, 92–97.CrossRefGoogle Scholar
  6. Brncic D. 1961b Non-random association of inversions in Drosophila pavani. Genetics 46, 401–406.PubMedPubMedCentralGoogle Scholar
  7. Cabrera V. M., Gonzalez A. M., Larruga J. M. and Vega C. 1983 Linkage disequilibrium in chromosome A of Drosophila subobscura. Genetica 61, 3–8.CrossRefGoogle Scholar
  8. Carson H. L. 1961 Heterosis and fitness in experimental populations of Drosophila melanogaster. Evolution 15, 496–509.CrossRefGoogle Scholar
  9. Chang C. and Chang H. 2014 Genetic analysis of parthenogenetic capability and fecundity in Drosophila albomicans. Zool. Stud. 53, 1–8.CrossRefGoogle Scholar
  10. Corbett-Detig R. B. and Hartl D. L. 2012 Population genomics of inversion polymorphism in Drosophila melanogaster. PLoS Genet. 8, e1003056.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Darlington C. D. and Mather K. 1949 The elements of genetics. Allen and Unwin, London.Google Scholar
  12. Das A. and Singh B. N. 1992 Heterosis associated with chromosomal inversions in Drosophila bipectinata. Kor. J. Genet. 14, 173–178.Google Scholar
  13. Dobzhansky Th. 1947 Adaptive changes induced by natural selection in Drosophila. Evolution 1, 1–16.CrossRefGoogle Scholar
  14. Dobzhansky Th. 1949 Observations and experiments on natural selection in Drosophila. Hereditas (suppl. vol.) 210–224.Google Scholar
  15. Dobzhansky Th. 1950 Genetics of natural populations. XIX. Origin of heterosis through selection in populations of Drosophila pseudoobscura. Genetics 35, 288–302.PubMedPubMedCentralGoogle Scholar
  16. Dobzhansky Th. 1951 Genetics and the origin of species, 3rd edition. Columbia University Press, New York.Google Scholar
  17. Dobzhansky Th. 1955 A review of some fundamental concepts and problems of population genetics. Cold Spring Harbor Symp. Quant. Biol. 20, 1–15.CrossRefPubMedGoogle Scholar
  18. Dobzhansky Th. 1957 Mendelian populations as genetic systems. Cold Spring Harbor Symp. Quant. Biol. 22, 385–393.CrossRefPubMedGoogle Scholar
  19. Dobzhansky Th. and Levene H. 1951 Development of heterosis through natural selection in experimental populations of Drosophila pseudoobscura. Am. Nat. 85, 247–264.CrossRefGoogle Scholar
  20. Dobzhansky Th. and Pavlovasky O. 1958 Interracial hybridization and breakdown of coadapted gene complexes in Drosophila paulistorum and D. willistoni. Proc. Natl. Acad. Sci. USA 44, 622–629.CrossRefPubMedGoogle Scholar
  21. Fontdevila A., Zapata C., Alvarez G., Sanchez L., Mendez J. and Enriquez I. 1983 Genetic coadaptation in the chromosomal polymorphism of Drosophila subobscura. I. Seasonal changes of gametic disequilibrium in natural population. Genetics 105, 935–995.PubMedPubMedCentralGoogle Scholar
  22. Fuller Z. L., Haynes G. D., Richards S. and Schaeffer S. W. 2016 Genomics of natural populations: how differentially expressed genes shape the evolution of chromosomal inversions in Drosophila pseudoobscura. Genetics 204, 287–301.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hedrick P. W., Jain S. and Holden L. 1978 Multilocus system in evolution. In Evolutionary biology (ed. M. K. Hecht W. C. Steere and B. Wallace), vol. 11, pp 101–184. Plenum Publishing Corporation, New York.CrossRefGoogle Scholar
  24. Hill W. G. and Robertson A. 1968 Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226–231.CrossRefPubMedGoogle Scholar
  25. Hoffmann A. A. and Rieseberg L. H. 2008 Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation. Annu. Rev. Ecol. Evol. Syst. 39, 21–42.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hoffmann A. A., Sgro C. M. and Weeks A. R. 2004 Chromosomal inversion polymorphisms and adaptation. Trends Ecol. Evol. 19, 482–488.CrossRefPubMedGoogle Scholar
  27. Ishii K. and Charlesworth B. 1977 Association between allozyme loci and gene arrangements due to hitch-hiking effects of new inversions. Genet. Res. 30, 93–106.CrossRefGoogle Scholar
  28. Kennington W. J., Partridge L. and Hoffman A. A. 2006 Patterns of diversity and linkage disequilibrium within the cosmopolitan inversion In (3R) Payune in Drosophila melanogaster are indicative of coadaptation. Genetics 172, 1655–1663.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kirkpatrick M. and Barton N. 2006 Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kumar A. and Gupta J. P. 1991 Heterosis and the lack of coadaptation in Drosophila nasuta. Heredity 67, 275–279.CrossRefPubMedGoogle Scholar
  31. Lakovaara S. 1981 Advances in genetics, development and evolution. Plenum Press, New York.Google Scholar
  32. Lerner I. M. 1958 The genetic basis of selection. Wiley, New York.Google Scholar
  33. Levitan M. 1954 Position effects in natural populations. Am. Nat. 88, 419–423.CrossRefGoogle Scholar
  34. Levitan M. 1958 Non-random associations inversions. Cold Spring Harbor Symp. Quant. Biol. 23, 251–268.CrossRefPubMedGoogle Scholar
  35. Levitan M. 2001 Studies of linkage in populations. XIV. Historical changes in frequencies of gene arrangements and arrangement combinations in natural populations of Drosophila robusta. Evolution 55, 2359–2362.CrossRefPubMedGoogle Scholar
  36. Lewontin R. C. 1974 The genetic basis of evolutionary change. Columbia University Press, New York.Google Scholar
  37. Lewontin R. C. and Kojima K. I. 1960 The evolutionary dynamics of complex polymorphism. Evolution 14, 470–472.Google Scholar
  38. Loukas M., Krimbas C. B. and Vergini Y. 1979 The genetics of Drosophila subobscura populations. IX. Studies on linkage disequilibrium in four natural populations. Genetics 93, 497–523.PubMedPubMedCentralGoogle Scholar
  39. Marinkovic D. 2006 Theodosius Dobzhansky and the synthetic theory of evolution: 30 years after the death of 20th century Darwin. Arch. Biol. Sci. Belgrade 58, 141–143.CrossRefGoogle Scholar
  40. Mather K. 1943 Polygenic inheritance and natural selection. Biol. Rev. 18, 32–64.CrossRefGoogle Scholar
  41. McFarquhar A. M. and Robertson F. W. 1963 The lack of evidence for coadaptation in crosses between geographical races of Drosophila subobscura. Genet. Res. 4, 104–131.CrossRefGoogle Scholar
  42. Nair P. S. and Brncic D. 1971 Allelic variations within identical chromosomal inversions. Am. Nat. 105, 291–294.CrossRefGoogle Scholar
  43. Nei M. and Li W. H. 1975 Probability of identical monomorphism in related species. Genet. Res. 26, 31–43.CrossRefPubMedGoogle Scholar
  44. Ohta T. and Kimura M. 1969 Linkage disequilibrium due to random genetic drift. Genet. Res. 13, 47–55.CrossRefGoogle Scholar
  45. Prakash S. 1974 Gene differences between the sex ratio and standard gene arrangements of the X chromosome and linkage disequilibrium between loci in the standard gene arrangement of the X chromosome in Drosophila pseudoobscura. Genetics 77, 795–804.PubMedPubMedCentralGoogle Scholar
  46. Prakash S. and Levitan M. 1973 Associations of alleles of the esterase I locus with the gene arrangements of the left arm of the second chromosome in Drosophila robusta. Genetics 75, 371–379.PubMedPubMedCentralGoogle Scholar
  47. Prakash S. and Levitan M. 1974. Associations of alleles of the malic dehydrogenases locus with a pericentric inversion in Drosophila robusta. Genetics 77, 565–568.PubMedPubMedCentralGoogle Scholar
  48. Prakash S. and Lewontin R. C. 1968 A molecular approach to the study of genic heterozygosity in natural populations. III. Direct evidence of coadaptation in gene arrangements of Drosophila. Proc. Natl. Acad. Sci. USA 59, 398–405.CrossRefPubMedGoogle Scholar
  49. Prakash S. and Lewontin R. C. 1971 A molecular approach to the study of genic heterozygosity in natural populations. V. Further direct evidence of coadaptation in inversions of Drosophila. Genetics 69, 405–408.PubMedPubMedCentralGoogle Scholar
  50. Prakash S. and Merritt R. B. 1972 Direct evidence of genic differentiation between sex ratio and standard gene arrangements of the X chromosome in Drosophila pseudoobscura. Genetics 72, 169–175.PubMedPubMedCentralGoogle Scholar
  51. Santos M. 2009 Recombination load in a chromosomal inversion polymorphism of Drosophila subobscura. Genetics 181, 803–809.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schaeffer S. W., Goeting-Minesky M. P., Kovacevic M., Peoples J. R., Graybill J. L., Miller J. M. et al. 2003 Evolutionary genomics of inversions in Drosophila pseudoobscura: evidence for epistasis. Proc. Natl. Acad. Sci. USA 100, 8319–8324.CrossRefPubMedGoogle Scholar
  53. Singh B. N. 1972 The lack of evidence for coadaptation in geographic populations of Drosophila ananassae. Genetica 43, 582–588.CrossRefPubMedGoogle Scholar
  54. Singh B. N. 1974 Persistence of heterosis in crosses between geographic races of Drosophila ananassae. Ind. J. Exp. Biol. 12, 376–377.Google Scholar
  55. Singh B. N. 1981 Interracial hybridization in Drosophila ananassae. Genetica 57, 139–142.CrossRefGoogle Scholar
  56. Singh B. N. 1985 Heterosis without selectional coadaptation in Drosophila ananassae. Theor. Appl. Genet. 69, 437–441.CrossRefPubMedGoogle Scholar
  57. Singh B. N. 1987 On the degree of genetic divergence in Drosophila ananassae population transferred to laboratory conditions. Zeit. Zool. Syst. Evol. 25, 180–187.CrossRefGoogle Scholar
  58. Singh B. N. 1988 Evidence for random genetic drift in laboratory populations of Drosophila ananassae. Ind. J. Exp. Biol. 26, 85–87.Google Scholar
  59. Singh B. N. 1989 Inversion polymorphism in Indian populations of Drosophila ananassae. Hereditas 110, 133–138.CrossRefGoogle Scholar
  60. Singh B. N. 1991 Genetic coadaptation in Drosophila. Ind. Rev. Life Sci. 11, 205–231.Google Scholar
  61. Singh B. N. 1996 Population and behaviour genetics of Drosophila ananassae. Genetica 97, 321–332.CrossRefPubMedGoogle Scholar
  62. Singh B. N. 1998 Population genetics of inversion polymorphism in Drosophila ananassae. Ind. J. Exp. Biol. 36, 739–748.Google Scholar
  63. Singh B. N. 2000 Drosophila ananassae – a species characterized by several unusual genetic features. Curr. Sci. 78, 391–398.Google Scholar
  64. Singh B. N. 2008 Chromosome inversions and linkage disequilibrium in Drosophila. Curr. Sci. 94, 459–464.Google Scholar
  65. Singh, B. N. 2010 Drosophila ananassae: a good model species for genetical, behavioural and evolutionary studies. Ind. J. Exp. Biol. 48, 33–345.Google Scholar
  66. Singh B. N. 2012 Darwin of the 20th century – Mayr or Dobzhansky? Curr. Sci. 103, 125.Google Scholar
  67. Singh B. N. 2015 Species and genetic diversity in the genus Drosophila inhabiting the Indian subcontinent. J. Genet. 94, 351–361.CrossRefPubMedGoogle Scholar
  68. Singh B. N. and Banerjee R. 1995 Chromosomal variability and interracial hybridization in Drosophila bipectinata. Cytobios 82, 219–227.PubMedGoogle Scholar
  69. Singh B. N. and Chatterjee S. 1985 Symmetrical and asymmetrical sexual isolation among laboratory strains of Drosophila ananassae. Can. J. Genet. Cytol. 27, 405–409.CrossRefPubMedGoogle Scholar
  70. Singh B. N. and Chatterjee S. 1986 Mating ability of homo- and heterokaryotypes of Drosophila ananassae from natural populations. Heredity 57, 75–78.CrossRefGoogle Scholar
  71. Singh B. N. and Chatterjee S. 1987 Variation in mating propensity and fertility in isofemale strains of Drosophila ananassae. Genetica 73, 237–242.CrossRefGoogle Scholar
  72. Singh B. N. and Chatterjee S. 1988 Selection for high and low mating propensity in Drosophila ananassae. Behav. Genet. 18, 357–369.CrossRefPubMedGoogle Scholar
  73. Singh B. N. and Chatterjee S. 1989 Rare male mating advantage in Drosophila ananassae. Genet. Select. Evol. 21, 447–455.CrossRefGoogle Scholar
  74. Singh B. N. and Das A. 1991 Linkage disequilibrium between inversions in Drosophila bipectinata. Biol. Zentbl. 110, 157–162.Google Scholar
  75. Singh B. N. and Pandey M. 1993 Selection for high and low pupation height in Drosophila ananassae. Behav. Genet. 23, 239–243.CrossRefPubMedGoogle Scholar
  76. Singh B. N. and Singh A. K. 1990 Linkage disequilibrium in laboratory strains of Drosophila ananassae is due to drift. Hereditas 112, 203–208.CrossRefPubMedGoogle Scholar
  77. Singh S. R. and Singh B. N. 2001 Female remating in Drosophila ananassae: bidirectional selection for remating speed. Behav. Genet. 31, 361–370.CrossRefPubMedGoogle Scholar
  78. Singh P. and Singh B. N. 2007 Population genetics of Drosophila ananassae: genetic differentiation among Indian natural populations at the level of inversion polymorphism. Genet. Res. 98, 191–199.Google Scholar
  79. Singh P. and Singh B. N. 2008 Population genetics of Drosophila ananassae. Genet. Res. 90, 409–419.CrossRefGoogle Scholar
  80. Singh P. and Singh B. N. 2010 Population genetics of Drosophila ananassae: chromosomal association studies in Indian populations. Genetika 42, 210–222.CrossRefGoogle Scholar
  81. Singh B. N. and Yadav J. P. 2015 Status of research on Drosophila ananassae at global level. J. Genet. 94, 785–792.CrossRefPubMedGoogle Scholar
  82. Sisodia S. and Singh B. N. 2010 Resistance to environmental stress in Drosophila ananassae: latitudinal variation and adaptation among populations. J. Evol. Biol. 23, 1979–1988.CrossRefPubMedGoogle Scholar
  83. Sisodia S. and Singh B. N. 2012 Experimental evidence for nutrition regulated stress response in Drosophila ananassae. PLoS One 7, e46131.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sisodia S., Verma P. and Singh B. N. 2015 Effect of diet quality and associated metabolic changes in adult stress response and life history traits in Drosophila ananassae. Curr. Sci. 109, 1687–1696.Google Scholar
  85. Wright S. 1964 Biology and philosophy of science. Monist 48, 265–290.CrossRefGoogle Scholar
  86. Wright S. and Dobzhansky Th. 1946 Genetics of natural populations. XII. Experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics 57, 179–188.Google Scholar
  87. Yadav J. P. and Singh B. N. 2003 Population genetics of Drosophila ananassae: inversion polymorphism and body size in Indian geographical populations. J. Zool. Syst. Evol. Res. 41, 217–226.CrossRefGoogle Scholar
  88. Zapata C., Alvarez G., Dosil M. and Fontdevila A. 1986 Genetic coadaptation in the chromosomal polymorphism of Drosophila subobscura. II. Changes of gametic disequilibrium in experimental populations. Genetica 71, 149–160.CrossRefGoogle Scholar
  89. Zivanovic G., Andjelkovic M. and Marinkovic D. 2000 Genetic load and coadaptation of chromosomal inversions. II. O-chromosomes in Drosophila subobscura populations. Hereditas 133, 105–113.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Genetics Laboratory, Department of Zoology, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations