Advertisement

Journal of Genetics

, Volume 97, Issue 2, pp 371–378 | Cite as

Epigenetics with special reference to the human X chromosome inactivation and the enigma of Drosophila DNA methylation

  • Deepti DeobagkarEmail author
Review Article

Abstract

Epigenetics confers adaptability and survival advantage to an organism. Most epigenetic processes demonstrate memory and heritability. DNA methylation is an epigenetic process that adds imprints which can be inherited during cell division and across generations. DNA methylation adds an additional level of information to the basic DNA sequence and can influence chromatin organization and the function of the DNA sequence. In bacteria, it works as a defence strategy and preserves genome integrity. DNA methylation in eukaryotes has been implicated in a large number of cellular regulatory processes and is implied in development, differentiation, life style diseases and cancer. Mammals have an intricate DNA methylation machinery with dNMT1, 3A and 3B enzymes. The human X chromosome inactivation, an example of differential regulation of homologous chromosomes, is known to involve many epigenetic processes with intricate interactions of lnc RNAs, miRNAs and DNA methylation. Drosophila possesses very low levels of DNA methylation with only dNMT2 gene. Since Drosophila is an important model organism for study of development and differentiation, the implications of this sparse DNA methylation and the lack of DNA methylation machinery in Drosophila is discussed.

Keywords

5-methylcytosine and 6-methyladenine DNA methyltransferases chromatin remodelling CpG methylation 

Notes

Acknowledgements

Deepti Deobagkar (nee’ Chhaya Achwal) is an ISRO (Indian Space Research organization) Chair Professor, a former Professor of Molecular Genetics, Zoology Department and former Director, Bioinformatics Centre at Savitribai Phule Pune University. The author would like to acknowledge support from innovation grant and UGC CAS for the work. Help from Shriram Rajpathak, Varada Abhyankar, Saniya Deshmukh and Pawan Mishra is acknowledged. Dileep Deobagkar has provided critical comments which are acknowledged. This article is written as an acknowledgement to Prof. H. Sharat Chandra, my Ph.D. supervisor, who introduced me to the fascinating world of imprinting and DNA methylation. The work on Drosophila DNA methylation and human X chromosome inactivation was initiated with him.

References

  1. Abhyankar V. K. 2018 Epigenetic regulation of pathogenic stress and innate immunity genes. Ph.D. thesis, Savitribai Phule Pune University, Pune, India.Google Scholar
  2. Achwal C., Ganguly P. and Chandra H. S. 1984 Estimation of the amount of 5-methylcytosine in Drosophila melanogaster DNA by amplified ELISA and photoacoustic spectroscopy. EMBO 3, 263.CrossRefGoogle Scholar
  3. Achwal C. W., Iyer C. A. and Chandra H. S. 1983 Immunochemical evidence for the presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA, Drosophila and mealybug DNA. FEBS Lett. 158, 353–358.CrossRefPubMedGoogle Scholar
  4. Allis C. D and Jenuwein T. 2016 The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500.CrossRefPubMedGoogle Scholar
  5. Barlow D. P. and Bartolomei M. S. 2014 Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6, a018382CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barra V., Schillaci T., Lentini L., Costa G. and Di Leonardo A. 2012 Bypass of cell cycle arrest induced by transient DNMT1 post-transcriptional silencing triggers aneuploidy in human cells. Cell Div. 7, 2.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baumann C. and De La Fuente R. 2009 ATRX marks the inactive X chromosome (Xi) in somatic cells and during imprinted X chromosome inactivation in trophoblast stem cells. Chromosoma 118, 209–222.CrossRefPubMedGoogle Scholar
  8. Blewitt M. E., Gendrel A.-V., Pang Z., Sparrow D. B., Whitelaw N., Craig J. M. et al. 2008 SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat. Genet. 40, 663–669.CrossRefPubMedGoogle Scholar
  9. Blow M. J., Clark T. A., Daum C. G., Deutschbauer A. M., Fomenkov A., Fries R. et al. 2016 The epigenomic landscape of prokaryotes. PLoS Genet. 12, e1005854.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bonora G. and Disteche C. M. 2017 Structural aspects of the inactive X chromosome. Phil. Trans. R. Soc. London, Ser. B 372, 20160357.CrossRefGoogle Scholar
  11. Cardoso-Júnior C. A., Fujimura P. T., Santos-Júnior C. D, Borges N. A., Ueira-Vieira1 C., Hartfelder K. et al. 2017. Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris. Genet. Mol. Biol. 40, 61–68.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Capuano F., Mülleder M., Kok R., Blom H. J. and Ralser M. 2014 Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal. Chem. 86, 3697.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chandra H. S. 1985 Is human X chromosome inactivation a sex-determining device? Proc. Natl. Acad. Sci. USA 82, 6947–6949.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chatterjee S., Deshpande A., Kelkar A. and Deobagkar D. D. 2004 CpC Methylation is present in Drosophila melanogaster and undergoes changes during its life cycle. Dros. Inf. Serv. 87, 78–80.Google Scholar
  15. Chaumeil J., Le Baccon P., Wutz A. and Heard E. 2006 A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223–2237.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cotton A. M., Chen C.-Y., Lam L. L., Wasserman W. W., Kobor M. S. and Brown C. J. 2013 Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains. Hum. Mol. Genet. 23, 1211–1223.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cotton A. M., Price, E. M., Jones, M. J., Balaton, B. P., Kobor, M. S. and Brown C. J. 2014 Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum. Mol. Genet. 24, 1528–1539.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cooney C. A., Dave A. A. and Wolff G. L. 2002 Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132, 2393S–2400S.CrossRefPubMedGoogle Scholar
  19. Deobagkar D., Liebler M., Graessmann M. and Graessmann A. 1990 Hemimethylation of DNA prevents chromatin expression. Proc. Natl. Acad. Sci. USA 87, 1691–1695.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Deobagkar D. and Chandra H. S. 2003 The inactive X chromosome in the human female is enriched in 5-methylcytosine to an unusual degree and appears to contain more of this modified nucleotide than the remainder of the genome. J. Genet. 82, 13–16.CrossRefPubMedGoogle Scholar
  21. Deobagkar D. D., Panikar C., Rajpathak S. N., Shaiwale N. S. and Mukherjee S. 2012 An immunochemical method for detection and analysis of changes in methylome. Methods 56, 260–267.CrossRefPubMedGoogle Scholar
  22. Deshmukh S. A. 2018 Epigenetic regulation stress and adaptation in Drosophila development. Ph.D. thesis, Savitribai Phule Pune University, Pune, India.Google Scholar
  23. Disteche C. M. and Berletch J. B. 2015 X-chromosome inactivation and escape. J. Genet. 94, 591–599.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Durdevic Z., Mobin M. B., Hanna K. Lyko F. and Schaefer M. 2013 The RNA methyltransferase Dnmt2 is required for efficient Dicer-2-dependent siRNA pathway activity in Drosophila. Cell Rep. 4, 931–937. Google Scholar
  25. Elango N., Hunt B. G., Goodisman M. A. and Yi S. V. 2009. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc. Natl. Acad. Sci. USA 106, 11206–11211.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Foret S., Kucharski R., Pellegrini M. Feng S., Jacobsen S. E., Robinson G. E. and Maleszka R. 2012. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl. Acad. Sci. USA 109, 4968–4973.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fraga M. F., Ballestar E., Paz M. F., Ropero S., Setien F., Ballestar M. L. et al. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102, 10604–10609.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gartler S. M. and Riggs A. D. 1983 Mammalian X-chromosome inactivation. Ann. Rev. Genet. 17, 155–190.CrossRefPubMedGoogle Scholar
  29. Gawade R., Chakravarty D., Debgupta J., Sangtani E., Narwade S., Gonnade R. et al. 2016 Comparative study of dG affinity vs. DNA methylation modulating properties of side chain derivatives of procainamide: insight into its DNA hypomethylating effect. RSC Adv. 6, 5350–5358.CrossRefGoogle Scholar
  30. Glastad K. M., Arsenault S. V., Vertacnik K. L., Scott M. Geib, Sasha K., Bryan N. Danforth. et al. 2017. Variation in DNA methylation is not consistently reflected by sociality in Hymenoptera. Genome Biol Evol. 9, 1687–1698.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gontan C., Achame E. M., Demmers J., Barakat T. S., Rentmeester E., van IJcken W. et al. 2012 RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485, 386–390.CrossRefPubMedGoogle Scholar
  32. Gowher H., Leismann O. and Jeltsch A. 2000 DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J. 19, 6918–6923.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hamidi T., Singh A. K. and Chen T. 2015 Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 7, 247–265.CrossRefPubMedGoogle Scholar
  34. Heard E., Rougeulle C., Arnaud D., Avner P., Allis C. D. and Spector D. L. 2001 Methylation of histone H\(_{3}\) at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107, 727–738.Google Scholar
  35. Hellman A. and Chess A. 2007 Gene body-specific methylation on the active X chromosome. Science 315, 1141–1143.CrossRefPubMedGoogle Scholar
  36. Herman J. G., Merlo A., Mao L., Lapidus R. G., Issa J.-P. J., Davidson N. E. et al. 1995 Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 55, 4525–4530.PubMedGoogle Scholar
  37. Heyn H. and Esteller M. 2015 An adenine code for DNA: a second life for N6-methyladenine. Cell 161, 710–713.CrossRefPubMedGoogle Scholar
  38. Holman L., Trontti K. and Helanterä H. 2016 Queen pheromones modulate DNA methyltransferase activity in bee and ant workers. Biol. lett. 12, 20151038.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jones P. A. and Baylin S. B. 2007 The epigenomics of cancer. Cell 128, 683–692.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jonkers I., Barakat T. S., Achame E. M., Monkhorst K., Kenter A., Rentmeester E. et al. 2009 RNF12 is an X-Encoded dose-dependent activator of X chromosome inactivation. Cell 139, 999–1011.CrossRefPubMedGoogle Scholar
  41. Joshi M., Rajpathak S. N., Narwade S. C. and Deobagkar D. 2016 Ensemble-based virtual screening and experimental validation of inhibitors targeting a novel site of human DNMT1. Chem. Biol. Drug Des. 88, 5–16.CrossRefPubMedGoogle Scholar
  42. Jurkowska R. Z. and Jeltsch A. 2016 Enzymology of mammalian DNA methyltransferases. In DNA methyltransferases-role and function (ed. Albert J. and Renata Z. J.), pp. 87–122. Springer International Publishing switzerland.CrossRefGoogle Scholar
  43. Kelkar A. and Deobagkar D. 2009 A novel method to assess the full genome methylation profile using monoclonal antibody combined with the high throughput based microarray approach. Epigenetics 4, 415–420.CrossRefPubMedGoogle Scholar
  44. Kelkar A. and Deobagkar D. 2010 Methylation profile of genes on the human X chromosome. Epigenetics 5, 612–618.CrossRefPubMedGoogle Scholar
  45. Kelkar A., Thakur V., Ramaswamy R. and Deobagkar D. 2009 Characterisation of inactivation domains and evolutionary strata in human X chromosome through Markov segmentation. PloS One 4, e7885.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kim J., Samaranayake M. and Pradhan S. 2009 Epigenetic mechanisms in mammals. Cell. Mol. Life Sci. 66, 596.CrossRefPubMedGoogle Scholar
  47. Laird P. W. and Jaenisch R. 1996 The role of DNA methylation in cancer genetics and epigenetics. Ann. Rev. Genet. 30, 441–464.CrossRefPubMedGoogle Scholar
  48. Lee J. T. and Jaenisch R. 1997 The (epi) genetic control of mammalian X-chromosome inactivation. Curr. Opin. Genet. Dev. 7, 274–280.CrossRefPubMedGoogle Scholar
  49. Li E., Bestor T. H. and Jaenisch R. 1992 Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.CrossRefPubMedGoogle Scholar
  50. Low D. A. and Casadesús J. 2008 Clocks and switches: bacterial gene regulation by DNA adenine methylation. Curr. Opin. Microbiol. 11, 106–112.CrossRefPubMedGoogle Scholar
  51. Lu Z., Carter A. C. and Chang H. Y. 2017 Mechanistic insights in X-chromosome inactivation. Phil. Trans. R. Soc. London, Ser. B 372, 20160356.CrossRefGoogle Scholar
  52. Lyko F., Ramsahoye B. H. and Jaenisch R. 2000 Development: DNA methylation in Drosophila melanogaster. Nature 408, 538–540.CrossRefPubMedGoogle Scholar
  53. Migeon B. R. 2017 Choosing the active X: the human version of X inactivation. Trends Genet. 33, 899–909.CrossRefPubMedGoogle Scholar
  54. Marinus M. G. and Casadesus J. 2009 Roles of DNA adenine methylation in host–pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev. 33, 488–503CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mohandas T., Sparkes R., Hellkuhl B., Grzeschik K. and Shapiro L. 1980 Expression of an X-linked gene from an inactive human X chromosome in mouse-human hybrid cells: further evidence for the noninactivation of the steroid sulfatase locus in man. Proc. Natl. Acad. Sci. USA 77, 6759–6763.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Okano M., Bell D. W., Heber D. A. and Li E. 1999 DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.CrossRefPubMedGoogle Scholar
  57. Pannikar C., Iyer S. and Deobagkar D. D. 2004 Detection of cytosine methyltransferase in Drosophila melanogaster. Dros. Inf. Serv. 91, 101–103.Google Scholar
  58. Pannikar C. S. 2013 Study of DNA methylation in Dipterans. Ph.D. thesis, Savitribai Phule Pune University, Pune, India.Google Scholar
  59. Panikar C. S., Rajpathak S. N., Abhyankar V., Deshmukh S. and Deobagkar D. D. 2015 Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster. Mol. Biol. Rep. 42, 1615–1621.CrossRefPubMedGoogle Scholar
  60. Panikar C. S., Paingankar M. S., Deshmukh S., Abhyankar V. and Deobagkar D. D. 2017 DNA methylation changes in a gene-specific manner in different developmental stages of Drosophila melanogaster. Curr. Sci. 112, 1165.CrossRefGoogle Scholar
  61. Patel C. V. and Gopinathan K. 1987. Determination of trace amounts of 5-methylcytosine in DNA by reverse-phase high-performance liquid chromatography. Anal. Biochem. 164, 164-169.CrossRefPubMedGoogle Scholar
  62. Patil N. A., Basu B., Deobagkar D. D., Apte S. K. and Deobagkar D. N. 2017 Putative DNA modification methylase \(\text{ DR }_{\rm C0020}\) of Deinococcus radiodurans is an atypical SAM dependent C-5 cytosine DNA methylase. Biochim. Biophys. Acta 1861, 593–602.CrossRefPubMedGoogle Scholar
  63. Patil V., Ward R. L. and Hesson L. B. 2014 The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9, 823–828.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pfeifer G., Tanguay R., Steigerwald S. and Riggs A. 1990 In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev. 4, 1277–1287.CrossRefPubMedGoogle Scholar
  65. Phalke S., Nickel O., Walluscheck D., Hortig F., Onorati M. C. and Reuter G. 2009 Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2. Nat. Genet. 41, 696–702.CrossRefPubMedGoogle Scholar
  66. Plath K., Mlynarczyk-Evans S., Nusinow D. A. and Panning B. 2002 Xist RNA and the mechanism of X chromosome inactivation. Ann. Rev. Genet. 36, 233–278.CrossRefPubMedGoogle Scholar
  67. Prasad B. J., Sabnis, K., Deobagkar D. D. and Deobagkar D. N. 2005 Deinococcus radiodurans strain R1 contains N6-methyladenine in its genome. Biochem. Bioph. Res. 335, 412–416.CrossRefGoogle Scholar
  68. Prothero K. E., Stahl J. M. and Carrel L. 2009 Dosage compensation and gene expression on the mammalian X chromosome: one plus one does not always equal two. Chromosome Res. 17, 637–648.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Radman M. and Wagner R. 1986. Mismatch repair in Escherichia coli. Annu. Rev. Genet. 20, 523–538.CrossRefPubMedGoogle Scholar
  70. Raddatz G., Guzzardo P. M., Olova N., Fantappié M. R., Rampp M., Schaefer M. et al. 2013 Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc. Natl. Acad. Sci. USA 110, 8627–8631.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rehan S. M., Glastad K. M., Lawson S. P. and Brendan G. Hunt. 2016. The genome and methylome of a subsocial small carpenter bee, Ceratina calcarata. Genome Biol. Evol. 8, 1401–1410.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rajpathak S. D and Deobagkar D. 2014 Evidence for epigenetic alterations in Turner syndrome opens up feasibility of new pharmaceutical interventions. Curr. Pharm. Design 20, 1778–1785.CrossRefGoogle Scholar
  73. Rajpathak S. N. and Deobagkar D. D. 2017a Micro RNAs and DNA methylation are regulatory players in human cells with altered X chromosome to autosome balance. Sci. Rep. 7, 43235.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rajpathak S. N. and Deobagkar D. D. 2017b Aneuploidy: an important model system to understand salient aspects of functional genomics. Brief. Funct. Genomics ( https://doi.org/10.1093/bfgp/elx041).
  75. Rajpathak S. N., Vellarikkal S. K., Patowary A., Scaria V., Sivasubbu S. and Deobagkar D. D. 2014 Human 45, X fibroblast transcriptome reveals distinct differentially expressed genes including long noncoding RNAs potentially associated with the pathophysiology of Turner syndrome. PLoS One 9, e100076.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Rasmussen E. M., Vågbø C. B., Münch D., Krokan H. E., Klungland A., Amdam G. V. et al. 2016 DNA base modifications in honey bee and fruit fly genomes suggest an active demethylation machinery with species-and tissue-specific turnover rates. Biochem. Bioph. Rep. 6, 9–15.Google Scholar
  77. Rastan S. 2015 Mary F. Lyon (1925-2014). Nature 518–536.Google Scholar
  78. Riggs A. 1990 DNA methylation and late replication probably aid cell memory, and type 1 DNA reeling could aid chromosome folding and enhancer function. Phil. Trans. R. Soc. London, Phil. Trans. R. Soc. London, Ser. B 326, 285–297.CrossRefGoogle Scholar
  79. Sado T., Fenner M. H., Tan S.-S., Tam P., Shioda T. and Li E. 2000 X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol. 225, 294–303.CrossRefPubMedGoogle Scholar
  80. Sánchez-Romero M. A., Cota I. and Casadesús J. 2015 DNA methylation in bacteria: from the methyl group to the methylome. Curr. Opin. Microbiol. 25, 9–16.CrossRefPubMedGoogle Scholar
  81. Shaiwale N. S., Basu B., Deobagkar D. D., Deobagkar D. N. and Apte S. K. 2015 DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans. J. Proteomics 126, 131–139.CrossRefPubMedGoogle Scholar
  82. Silva J., Nichols J., Theunissen T. W., Guo G., van Oosten A. L., Barrandon O. et al. 2009 Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Smith Z. D. and Meissner A. 2013 DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204.CrossRefPubMedGoogle Scholar
  84. Soma M., Fujihara Y., Okabe M., Ishino F. and Kobayashi S. 2014 Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos. Sci. Rep. 4, 5181.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sujash Chatterjee A. K. and Deepti Deobagkar 2004 CpC Methylation is present in Drosophila melanogaster and undergoes changes during its life cycle. In FlyBase, vol. 87. Indiana.Google Scholar
  86. Tang L.-Y., Reddy M. N., Rasheva V., Lee T. L., Lin M. J., Hung M. S. and Shen C. K. 2003 The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases. J. Biol. Chem. 278, 33613–33616.CrossRefPubMedGoogle Scholar
  87. Takayama S., Dhahbi J., Roberts A., Mao G., Heo S.-J., Pachter L. et al. 2014 Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res. 24, 821–830.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Tian D., Sun S. and Lee J. T. 2010 The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143, 390–403.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tukiainen T., Villani A.-C., Yen A., Rivas M. A., Marshall J. L., Satija R. et al. 2016 Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248.CrossRefGoogle Scholar
  90. Urieli-Shoval S., Gruenbaum Y., Sedat J. and Razin A 1982 The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett. 146, 148–152.CrossRefPubMedGoogle Scholar
  91. Vallot C., Huret C., Lesecque Y., Resch A., Oudrhiri N., Bennaceur A. et al. 2013 XACT, a long non-coding transcript coating the active X chromosome in human pluripotent cells. Nat. Genet. 45, 239–241.CrossRefPubMedGoogle Scholar
  92. Wang Z., Willard H. F., Mukherjee S. and Furey T. S. 2006 Evidence of influence of genomic DNA sequence on human X chromosome inactivation. PLoS Comput. Biol. 2, e113.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yang F., Deng X., Ma W., Berletch J. B., Rabaia N., Wei G. et al. 2015 The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16, 52.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhang G., Huang H., Liu D., Cheng Y., Liu X., Zhang W. et al. 2015 N 6-methyladenine DNA modification in Drosophila. Cell 161, 893–906.CrossRefPubMedGoogle Scholar
  95. Zhao J., Sun B. K., Erwin J. A., Song J.-J. and Lee J. T. 2008 Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.ISRO Cell and Centre of Advanced Studies, Department of ZoologySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations