Journal of Genetics

, Volume 97, Issue 1, pp 173–178 | Cite as

Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network

  • Xian-Dong Song
  • Xian-Xu Song
  • Gui-Bo Liu
  • Chun-Hui Ren
  • Yuan-Bo Sun
  • Ke-Xin Liu
  • Bo Liu
  • Shuang Liang
  • Min ZhuEmail author
Research Article


The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein–protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.


rheumatoid arthritis dysregulated pathways pathway interaction network 


  1. Ahn T., Lee E., Huh N. and Park T. 2014 Personalized identification of altered pathways in cancer using accumulated normal tissue data. Bioinformatics 30, i422–i429.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alamanos Y. and Drosos A. A. 2005 Epidemiology of adult rheumatoid arthritis. Autoimmun. Rev. 4, 130–136.CrossRefPubMedGoogle Scholar
  3. Andersen M., Meyer M. K., Nagaev I., Nagaeva O., Wikberg J. E. S., Minchevanilsson L. et al. 2016 AB0020 the melanocortin system is responsive in disease driving immune cells in rheumatoid arthritis and may offer a pathway to curative treatment.Ann. Rheum. Dis. 75, 903–904.CrossRefGoogle Scholar
  4. Avinazubieta J. A., Thomas J., Sadatsafavi M., Lehman A. J. and Lacaille D. 2012 Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis. 71, 1524–1529.CrossRefGoogle Scholar
  5. Barabasi A.-L. and Oltvai Z. N. 2004 Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113.CrossRefPubMedGoogle Scholar
  6. Begovich A. B., Carlton V. E., Honigberg L. A., Schrodi S. J., Chokkalingam A. P., Alexander H. C. et al. 2004 A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Braga-Neto U. M. and Dougherty E. R. 2004 Is cross-validation valid for small-sample microarray classification? Bioinformatics 20, 374–380.CrossRefPubMedGoogle Scholar
  8. Choy E. 2012 Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 51, suppl. 5, v3–v11.CrossRefPubMedGoogle Scholar
  9. Diogo D., Kurreeman F., Stahl E., Liao K., Gupta N., Greenberg J. et al. 2013 Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid a Arthritis. Am. J. Hum. Genet. 92, 15–27.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Firestein G. S. 2003 Evolving concepts of rheumatoid arthritis. Nature 423, 356–361.CrossRefPubMedGoogle Scholar
  11. Franceschini A., Szklarczyk D., Frankild S., Kuhn M., Simonovic M., Roth A. et al. 2013 STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, 808–815.CrossRefGoogle Scholar
  12. Glazier A. M., Nadeau J. H. and Aitman T. J. 2002 Finding genes that underlie complex traits. Science 298, 2345–2349.CrossRefPubMedGoogle Scholar
  13. Hair M. J. H., Sande M. G. H., Ramwadhdoebe T. H., Hanson M., Landewe R. and Leij C. 2014 Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol. 66, 513–522.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hendrich B. D. and Willard H. F. 1995 Epigenetic regulation of gene expression: the effect of altered chromatin structure from yeast to mammals. Hum. Mol. Genet. 4 spec no, 1765–1777.Google Scholar
  15. Herrero J., Díazuriarte R. and Dopazo J. 2003 Gene expression data preprocessing. Bioinformatics 19, 655–656.CrossRefPubMedGoogle Scholar
  16. Hotelling H. 2010 Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441.CrossRefGoogle Scholar
  17. Hu R., Qiu X., Glazko G., Klebanov L. and Yakovlev A. 2009 Detecting intergene correlation changes in microarray analysis: a new approach to gene selection. BMC Bioinformatics 10, 20–28.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Karouzakis E., Gay R. E., Gay S. and Neidhart M. 2009 Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat. Rev. Rheumatol. 5, 266–272.CrossRefPubMedGoogle Scholar
  19. Khatri P., Sirota M. and Butte A. J. 2012 Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8, 1454–1459.CrossRefGoogle Scholar
  20. Kyburz D., Rethage J., Seibl R., Lauener R., Gay R. E., Carson D. A. et al. 2003 Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling. Arthritis Rheumatol. 48, 642.CrossRefGoogle Scholar
  21. Li Y. and Agarwal P. 2009 A pathway-based view of human diseases and disease relationships. PLoS ONE 4, e4346–e4346.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu K. Q., Liu Z. P., Hao J. K., Chen L. and Zhao X. M. 2012 Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics 13, 1–11.Google Scholar
  23. Matthews L., Gopinath G., Gillespie M., Caudy M., Croft D., De B. B. et al. 2009 Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 37, 49–61.Google Scholar
  24. Merikangas K. R., Low N. C. and Hardy J. 2006 Commentary: understanding sources of complexity in chronic diseases–the importance of integration of genetics and epidemiology. Int. J. Epidemiol. 35, 593–596.CrossRefGoogle Scholar
  25. Miao C. G., Yang Y. Y., He X., Li X. F., Huang C., Huang Y. et al. 2013 Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell. Signal. 25, 2069–2078.CrossRefPubMedGoogle Scholar
  26. Michaud K. and Wolfe F. 2007 Comorbidities in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 21, 885–906.CrossRefPubMedGoogle Scholar
  27. Okada Y., Wu D., Trynka G., Raj T., Terao C., Ikari K. et al. 2014 Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381.CrossRefPubMedGoogle Scholar
  28. Pierer M., Rethage J., Seibl R., Lauener R., Brentano F., Wagner U. et al. 2004 Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by toll-like receptor 2 ligands. J. Immunol. 172, 1256–1265.CrossRefPubMedGoogle Scholar
  29. Ringn and Eacute M. 2008 What is principal component analysis? Nature Biotechnol. 26, 303–304.Google Scholar
  30. Rosenberg A., Fan H., Chiu Y. G., Bolce R., Tabechian D., Barrett R. et al. 2014 Divergent gene activation in peripheral blood and tissues of patients with rheumatoid arthritis, psoriatic arthritis and psoriasis following infliximab therapy. PLOS One 9, e110657–e110657.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Roubille C., Richer V., Starnino T., Mccourt C., Mcfarlane A., Fleming P. et al. 2015 The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 480–489.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sedgwick P. 1996 Pearson’s correlation coefficient. N. Z. Med. J. 109, 377.Google Scholar
  33. Seibl R., Birchler T., Loeliger S., Hossle J. P., Gay R. E., Saurenmann T. et al. 2003 Expression and regulation of toll-like receptor 2 in rheumatoid arthritis synovium. Am. J. Pathol. 162, 1221–1227.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Song M., Yan Y. and Jiang Z. 2014 Drug-pathway interaction prediction via multiple feature fusion. Mol. Biosyst. 10, 2907–2913.CrossRefPubMedGoogle Scholar
  35. Stelzl U., Worm U., Lalowski M., Haenig C., Brembeck F. H., Goehler H. et al. 2005 A human protein-protein interaction metwork: a resource for annotating the proteome. Cell 122, 957–968.CrossRefPubMedGoogle Scholar
  36. Takeuchi O., Hoshino K. and Akira S. 2000 Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165, 5392–5396.Google Scholar
  37. Wang J., Warris A., Ellingsen E., Jørgensen P., Flo T., Espevik T. et al. 2001 Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect. Immun. 69, 2402–2406.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wilson A. G. 2008 Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J. Periodontol. 79, 1514–1519.CrossRefPubMedGoogle Scholar
  39. Xia Y., Yu H., Jansen R., Seringhaus M., Baxter S., Greenbaum D. et al. 2004 Analyzing cellular biochemistry in terms of molecular networks. Annu. Rev. Biochem. 73, 1051–1087.CrossRefPubMedGoogle Scholar
  40. Yamada H., Nakashima Y., Okazaki K., Mawatari T., Fukushi J. I., Kaibara N. et al. 2016 Comparative risk of hospitalized infection associated with biologic agents in rheumatoid arthritis patients enrolled in medicare. Arthritis Rheumatol. 68, 56–66.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Xian-Dong Song
    • 1
  • Xian-Xu Song
    • 2
  • Gui-Bo Liu
    • 3
  • Chun-Hui Ren
    • 4
  • Yuan-Bo Sun
    • 5
  • Ke-Xin Liu
    • 1
  • Bo Liu
    • 1
  • Shuang Liang
    • 4
  • Min Zhu
    • 4
    Email author
  1. 1.Department of OrthopaedicsHongqi Hospital of Mudanjiang Medical UniversityMudanjiangPeople’s Republic of China
  2. 2.Department of General SurgerySecond Affiliated Hospital of Mudanjiang Medical UniversityMudanjiangPeople’s Republic of China
  3. 3.Department of AnatomyMudanjiang Medical UniversityMudanjiangPeople’s Republic of China
  4. 4.Department of MRIHongqi Hospital of Mudanjiang Medical UniversityMudanjiangPeople’s Republic of China
  5. 5.Department of Kidney Internal MedicineHongqi Hospital of Mudanjiang Medical UniversityMudanjiangPeople’s Republic of China

Personalised recommendations