Journal of Genetics

, Volume 96, Issue 6, pp 993–1003 | Cite as

Association of lactase 13910 C/T polymorphism with bone mineral density and fracture risk: a meta-analysis

  • Yougen Wu
  • Yinghua Li
  • Yunqing Cui
  • Yunjiao Zhou
  • Qingqing QianEmail author
  • Yang HongEmail author
Research Article


A number of studies have investigated the association of lactase (LCT, C/T-13910) gene polymorphism with bone mineral density (BMD) and fracture risk, but previous results were inconclusive. In this study, a meta-analysis was performed to quantify the association of LCT (C/T-13910) polymorphism with BMD and fracture risk. Eligible publications were searched in the PubMed, Web of Science, Embase databases, Google Scholar, Yahoo and Baidu. Pooled weighed mean difference (WMD) or odds ratio (OR) with their 95% confidence interval (CI) were calculated using a fixed-effects or random-effects model. A total of nine articles with 8871 subjects were investigated in the present meta-analysis. Overall, the TT/TC genotypes of LCT 13910 C/T polymorphism showed significantly higher BMD than those with the CC genotype at femur neck (FN) (\(\hbox {WMD} = 0.011\,\hbox {g/cm}^{2}\), 95% CI \(=\) 0.004–0.018, \(P = 0.003\)). Besides, LCT 13910 C/T polymorphism may decrease the risk of any site fractures (for TT versus TC \(+\) CC, OR \(=\) 0.813, 95% CI \(=\) 0.704–0.938, \(P = 0.005\); for T allele versus C allele, OR \(=\) 0.885, 95% CI \(=\) 0.792–0.989, \(P = 0.032\)). However, there was no significant association of LCT 13910 C/T polymorphism with BMD at lumbar spine and risk of vertebral fractures under all genetic contrast models (all P values were \({>}0.05\)). The meta-analysis suggests that there are significant effects of LCT 13910 C/T polymorphism on BMD and fracture risk. Large-scale studies with different ethnic populations will be needed to further investigate the possible race-specific effect of LCT 13910 C/T polymorphism on BMD and fracture risk.


lactase polymorphism bone mineral density fracture meta-analysis 



This study was funded by the Scientific Research Project of Shanghai Municipal Health and Family Planning Commission (grant no. 201540203).


  1. Agueda L., Urreizti R., Bustamante M., Jurado S., Garcia-Giralt N., Diez-Perez A. et al. 2010 Analysis of three functional polymorphisms in relation to osteoporosis phenotypes: replication in a Spanish cohort. Calcif. Tissue Int. 87, 14–24.CrossRefPubMedGoogle Scholar
  2. Bácsi K., Kosa J. P., Lazary A., Balla B., Horvath H., Kis A. et al. 2009 LCT 13910 C/T polymorphism, serum calcium, and bone mineral density in postmenopausal women. Osteoporos. Int.  20, 639–645.CrossRefPubMedGoogle Scholar
  3. Deng W., Han J. C., Chen L. and Qi W. L. 2015 Estrogen receptor alpha gene PvuII polymorphism and risk of fracture in postmenopausal women: a meta-analysis. Genet. Mol. Res.  14, 1293–1300.CrossRefPubMedGoogle Scholar
  4. DerSimonian R. and Laird N. 2015 Meta-analysis in clinical trials revisited. Contemp. Clin. Trials  45, 139–145.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Egger M., Davey Smith G., Schneider M. and Minder C. 1997 Bias in meta-analysis detected by a simple, graphical test. BMJ  315, 629–634.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Enattah N., Pekkarinen T., Valimaki M. J., Loyttyniemi E. and Jarvela I. 2005a Genetically defined adult-type hypolactasia and self-reported lactose intolerance as risk factors of osteoporosis in Finnish postmenopausal women. Eur. J. Clin. Nutr.  59, 1105–1111.CrossRefPubMedGoogle Scholar
  7. Enattah N., Valimaki V. V., Valimaki M. J., Loyttyniemi E., Sahi T. and Jarvela I. 2004 Molecularly defined lactose malabsorption, peak bone mass and bone turnover rate in young finnish men. Calcif. Tissue Int. 75, 488–493.CrossRefPubMedGoogle Scholar
  8. Enattah N. S., Sulkava R., Halonen P., Kontula K. and Jarvela I. 2005b Genetic variant of lactase-persistent C/T-13910 is associated with bone fractures in very old age. J. Am. Geriatr. Soc.  53, 79–82.CrossRefPubMedGoogle Scholar
  9. Gugatschka M., Hoeller A., Fahrleitner-Pammer A., Dobnig H., Pietschmann P., Kudlacek S. et al. 2007 Calcium supply, bone mineral density and genetically defined lactose maldigestion in a cohort of elderly men. J. Endocrinol. Invest. 30, 46–51.CrossRefPubMedGoogle Scholar
  10. Guo L., Tang K., Quan Z., Zhao Z. and Jiang D. 2014 Association between seven common OPG genetic polymorphisms and osteoporosis risk: a meta-analysis. DNA Cell Biol. 33, 29–39.CrossRefPubMedGoogle Scholar
  11. Hsu Y. H. and Kiel D. P. 2012 Clinical review: Genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J. Clin. Endocrinol. Metab. 97, 1958–1977.CrossRefGoogle Scholar
  12. Karasik D. and Cohen-Zinder M. 2012 Osteoporosis genetics: year 2011 in review. Bonekey Rep. 1, 114.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Koek W. N., van Meurs J. B., van der Eerden B. C., Rivadeneira F., Zillikens M. C., Hofman A. et al. 2010 The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. J. Bone Miner. Res. 25, 1980–1987.CrossRefPubMedGoogle Scholar
  14. Kull M., Kallikorm R. and Lember M. 2009 Impact of molecularly defined hypolactasia, self-perceived milk intolerance and milk consumption on bone mineral density in a population sample in Northern Europe. Scand. J. Gastroenterol. 44, 415–421.CrossRefPubMedGoogle Scholar
  15. Mantel N. and Haenszel W. 1959 Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748.PubMedGoogle Scholar
  16. Marozik P., Mosse I., Alekna V., Rudenko E., Tamulaitiene M., Ramanau H. et al. 2013 Association between polymorphisms of VDR, COL1A1, and LCT genes and bone mineral density in Belarusian women with severe postmenopausal osteoporosis. Medicina 49, 177–184.PubMedGoogle Scholar
  17. Obermayer-Pietsch B. M., Bonelli C. M., Walter D. E., Kuhn R. J., Fahrleitner-Pammer A., Berghold A. et al. 2004 Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. J. Bone Miner. Res. 19, 42–47.CrossRefPubMedGoogle Scholar
  18. Obermayer-Pietsch B. M., Gugatschka M., Reitter S., Plank W., Strele A., Walter D. et al. 2007 Adult-type hypolactasia and calcium availability: decreased calcium intake or impaired calcium absorption? Osteoporos. Int. 18, 445–451.CrossRefPubMedGoogle Scholar
  19. Pocock N. A., Eisman J. A., Hopper J. L., Yeates M. G., Sambrook P. N. and Eberl S. 1987 Genetic determinants of bone mass in adults. A twin study. J. Clin. Invest. 80, 706–710.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Richards J. B., Zheng H. F. and Spector T. D. 2012 Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat. Rev. Genet. 13, 576–588.CrossRefPubMedGoogle Scholar
  21. Shen H., Xie J. and Lu H. 2014 Vitamin D receptor gene and risk of fracture in postmenopausal women: a meta-analysis. Climacteric 17, 319–324.CrossRefPubMedGoogle Scholar
  22. Smith G. D., Lawlor D. A., Timpson N. J., Baban J., Kiessling M., Day I. N. et al. 2009 Lactase persistence-related genetic variant: population substructure and health outcomes. Eur. J. Hum. Genet. 17, 357–367.CrossRefPubMedGoogle Scholar
  23. Stewart T. L. and Ralston S. H. 2000 Role of genetic factors in the pathogenesis of osteoporosis. J. Endocrinol.  166, 235–245.CrossRefGoogle Scholar
  24. Uusi-Rasi K., Sievanen H., Vuori I., Pasanen M., Heinonen A. and Oja P. 1998 Associations of physical activity and calcium intake with bone mass and size in healthy women at different ages. J. Bone Miner. Res. 13, 133–142.CrossRefPubMedGoogle Scholar
  25. Valimaki V. V., Alfthan H., Lehmuskallio E., Loyttyniemi E., Sahi T., Stenman U. H. et al. 2004 Vitamin D status as a determinant of peak bone mass in young Finnish men. J. Clin. Endocrinol. Metab. 89, 76–80.CrossRefPubMedGoogle Scholar
  26. Veldhuis-Vlug A. G., Oei L., Souverein P. C., Tanck M. W., Rivadeneira F., Zillikens M. C. et al. 2015 Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density. Osteoporos. Int. 26, 2019–2027.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wang Z., Yang Y., He M., Wang R., Ma J., Zhang Y. et al. 2013 Association between interleukin-6 gene polymorphisms and bone mineral density: a meta-analysis. Genet. Test Mol. Biomarkers. 17, 898–909.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Xiong Q., Xin L., Zhang L., Mao Z. and Tang P. 2015 Association between calcitonin receptor I gene polymorphism and bone mineral density: a meta-analysis. Exp. Ther. Med. 9, 65–76.CrossRefPubMedGoogle Scholar
  29. Xu G. Y., Qiu Y. and Mao H. J. 2014 Common polymorphism in the LRP5 gene may increase the risk of bone fracture and osteoporosis. Biomed. Res. Int. 2014, 290531.PubMedPubMedCentralGoogle Scholar
  30. Zintzaras E., Doxani C., Koufakis T., Kastanis A., Rodopoulou P. and Karachalios T. 2011 Synopsis and meta-analysis of genetic association studies in osteoporosis for the focal adhesion family genes: the CUMAGAS-OSTEOporosis information system. BMC Med. 9, (

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Central Laboratory, The Fifth People’s Hospital of ShanghaiFudan UniversityShanghaiPeople’s Republic of China
  2. 2.National Institute of Clinical Research, The Fifth People’s Hospital of ShanghaiFudan UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Osteology, The Fifth People’s Hospital of ShanghaiFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations