Advertisement

Journal of Genetics

, Volume 96, Issue 3, pp 445–456 | Cite as

Epigenetic inheritance, prions and evolution

  • Johannes ManjrekarEmail author
Review Article

Abstract

The field of epigenetics has grown explosively in the past two decades or so. As currently defined, epigenetics deals with heritable, metastable and usually reversible changes that do not involve alterations in DNA sequence, but alter the way that information encoded in DNA is utilized. The bulk of current research in epigenetics concerns itself with mitotically inherited epigenetic processes underlying development or responses to environmental cues (as well as the role of mis-regulation or dys-regulation of such processes in disease and ageing), i.e., epigenetic changes occurring within individuals. However, a steadily growing body of evidence indicates that epigenetic changes may also sometimes be transmitted from parents to progeny, meiotically in sexually reproducing organisms or mitotically in asexually reproducing ones. Such transgenerational epigenetic inheritance (TEI) raises obvious questions about a possible evolutionary role for epigenetic ‘Lamarckian’ mechanisms in evolution, particularly when epigenetic modifications are induced by environmental cues. In this review I attempt a brief overview of the periodically reviewed and debated ‘classical’ TEI phenomena and their possible implications for evolution. The review then focusses on a less-discussed, unique kind of protein-only epigenetic inheritance mediated by prions. Much remains to be learnt about the mechanisms, persistence and effects of TEI. The jury is still out on their evolutionary significance and how these phenomena should be incorporated into evolutionary theory, but the growing weight of evidence indicates that likely evolutionary roles for these processes need to be seriously explored.

Keywords

epigenetics epigenetic inheritance evolution prions 

Notes

Acknowledgements

My thanks to Hiral Shah for her sharp-eyed proofreading and help in submitting this manuscript.

References

  1. Agrawal A. A. 2002 Herbivory and maternal effects: mechanisms and consequences of transgenerational induced plant resistance. Ecology 83, 3408–3415.CrossRefGoogle Scholar
  2. Alberti S., Halfmann R., King O., Kapila A. and Lindquist S. 2009 A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alleman M., Sidorenko L., McGinnis K., Seshadri V., Dorweiler J.E., White J. et al. 2006 An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298.PubMedCrossRefGoogle Scholar
  4. Angarica V. E., Ventura S. and Sancho J. 2013 Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics 14, 316.CrossRefGoogle Scholar
  5. Anway M. D., Cupp A. S., Uzumcu M. and Skinner M. K. 2005 Epigenetic transgenerational actions of endocrine disruptors and mate fertility. Science 308, 1466–1469.PubMedCrossRefGoogle Scholar
  6. Ashe A., Sapetschnig A., Weick E.-M., Mitchell J., Bagijn M. P., Cording A. C. et al. 2012 piRNAs can trigger a multigenerational epigenetic memory in the germline of \(C\). elegans. Cell 150, 88–99.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bastow R., Mylne J., Lister C., Lippman Z., Martiennsen R. and Dean C. 2004 Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164–167.PubMedCrossRefGoogle Scholar
  8. Baudin-Baillieu A., Legendre R., Kuchly C., Hatin I., Demais S., Mestdagh C. et al. 2014 Genome-wide translational changes induced by the prion [\({PSI}^{+}\)]. Cell Reports 8, 439–448.PubMedCrossRefGoogle Scholar
  9. Bondarev S. A., Zhouravleva G. A., Belousov M. V. and Kajava A. V. 2015 Structure-based view on [\(PSI^{+}\)] prion properties. Prion 9, 190–199.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brown J. C. S. and Lindquist S. 2009 A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev. 23, 2320–2332.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bureau T. E., Ronald T. C. and Wessler S. R. 1996 A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. USA 93, 8524–8529.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Burggren W. 2016 Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology 5, 24.PubMedCentralCrossRefGoogle Scholar
  13. Chandler V. L. 2007 Paramutation: from maize to mice. Cell 128, 641–645.PubMedCrossRefGoogle Scholar
  14. Chernoff Y. O. 2007 Stress and prions: lessons from the yeast model. FEBS Lett. 581, 3695–3701.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chernoff Y. O., Lindquist S. L., Ono B., Inge-Vechtomov S. G. and Liebman S. W. 1995 Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [\({PSI}^{+}\)]. Science 268, 880–884.PubMedCrossRefGoogle Scholar
  16. Chernoff Y. O., Galkin A. P., Lewitin E., Chernova T. A., Newnam G. P. and Belenkiy S. M. 2000 Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865–876.PubMedCrossRefGoogle Scholar
  17. Chernova T. A., Wilkinson K. D. and Chernoff Y. O. 2014 Physiological and environmental control of yeast prions. FEMS Microbiol. Rev. 38, 326–344.PubMedCrossRefGoogle Scholar
  18. Chernova T. A., Romanyuk A. V., Karpova T. S., Shanks J. R., Ali M., Moffatt N. et al. 2011 Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol. Cell 43, 242–252.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chisholm R. H., Lorenzi T., Desvillettes L. and Hughes B. 2016 Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences. Z. Angew. Math. Phys. 67, 100.CrossRefGoogle Scholar
  20. Chiti F. and Dobson C. M. 2006 Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.PubMedCrossRefGoogle Scholar
  21. Coen E. S., Carpenter R. and Martin C. 1986 Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47, 285–296.PubMedCrossRefGoogle Scholar
  22. Cox B. S. 1965 [PSI], a cytoplasmic suppressor of super-suppression in yeast. Heredity 20, 505–521.CrossRefGoogle Scholar
  23. Cox B. S., Tuite M. F. and McLaughlin C. S. 1988 The Psi factor of yeast: A problem in inheritance. Yeast 4, 159–179.PubMedCrossRefGoogle Scholar
  24. Crews D., Gillette R., Scarpino S. V., Manikkam M., Savenkova M. I. and Skinner M. K. 2012 Epigenetic transgenerational inheritance of altered stress responses. Proc. Natl. Acad. Sci. USA 109, 9143–9148.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cropley J. E., Suter C. M., Beckman K. B. and Martin D. I. 2006 Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc. Natl. Acad. Sci. USA 103, 17308–17312.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Crow E. T. and Li L. 2011 Newly identified prions in budding yeast, and their possible functions. Semin. Cell Dev. Biol. 22, 452–459.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cubas P., Vincent C. and Coen E. 1999 An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161.PubMedCrossRefGoogle Scholar
  28. Danchin E., Charmantier A., Champagne F. A., Mesoudi A., Pujol B. and Blanchet S. 2011 Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat. Rev. Genet. 12, 475–486.PubMedCrossRefGoogle Scholar
  29. Daxinger L. and Whitelaw E. 2012 Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13, 153–162.PubMedCrossRefGoogle Scholar
  30. Derkatch I. L., Bradley M. E., Hong J. Y. and Liebman S. W. 2001 Prions affect the appearance of other prions: the story of [\({PIN}^{+}\)]. Cell 106, 171–182.PubMedCrossRefGoogle Scholar
  31. Doronina V. A., Staniforth G. L., Speldewinde S. H., Tuite M. F. and Grant C. M. 2015 Oxidative stress conditions increase the frequency of de novo formation of the yeast [\({PSI}^{+}\)] prion. Mol. Microbiol. 96, 163–174.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Du Z., Park K. W., Yu H., Fan Q. and Li L. 2008 Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat. Genet. 40, 460–465.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Du Z., Zhang Y. and Li L. 2015 The yeast prion [\({SWI}^{+}\)] abolishes multicellular growth by triggering conformational changes of multiple regulators required for flocculin gene expression. Cell Rep. 13, 2865–2878.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Duncan E. J., Gluckman P. D. and Dearden P. K. 2014 Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype? J. Exp. Zool. B Mol. Dev. Evol. 322, 208–220.PubMedCrossRefGoogle Scholar
  35. Durand S., Bouche N., Perez Strand E., Loudet O. and Camilleri C. 2012 Rapid establishment of genetic incompatibility through natural epigenetic variation. Curr. Biol. 22, 326–331.PubMedCrossRefGoogle Scholar
  36. Edskes H. K., Khamar H. J., Winchester C. L., Greenler A. J., Zhou A., McGlinchey R.P. et al. 2014 Sporadic distribution of prion-forming ability of Sup35p from yeasts and fungi. Genetics 198, 605–616.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fedoroff N. V. 2012 Transposable elements, epigenetics, and genome evolution. Science 338, 758–767.PubMedCrossRefGoogle Scholar
  38. Feil R. and Fraga M. F. 2012 Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13, 97–109.PubMedGoogle Scholar
  39. Ferguson-Smith A.C. and Patti M.-E. 2011 You are what your dad ate. Cell Metab. 13, 115–117.PubMedCrossRefGoogle Scholar
  40. Fox J. W. and Lenski R. E. 2015 From here to eternity—the theory and practice of a really long experiment. PLoS Biol. 13, e1002185.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Furrow R. E. and Feldman M.W. 2014 Genetic variation and the evolution of epigenetic regulation. Evolution 68, 673–683.PubMedCrossRefGoogle Scholar
  42. Gabriel J.M. and Hollick J.B. 2015 Paramutation in maize and related behaviors in metazoans. Semin. Cell Dev. Biol. 44, 11–21.PubMedCrossRefGoogle Scholar
  43. Giacopelli B.J. and Hollick J.B. 2015 Trans-homolog interactions facilitating paramutation in maize. Plant Physiol. 168, 1226–1236.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gòmez-Schiavon M. and Buchler N.E. 2016 Evolutionary dynamics of an epigenetic switch in a fluctuating environment. Online preprint not peer reviewed, available on Cold Spring Harbor preprint server (doi:http://dx.doi.org/10.1101/072199).
  45. Gould S.J. 1977 Ontogeny and phylogeny. Belknap Press of Harvard University Press, Cambridge, USA.Google Scholar
  46. Griswold C.K. and Masel J. 2009 Complex adaptations can drive the evolution of the capacitor [PSI], even with realistic rates of yeast sex. PLoS Genet. 5, e1000517.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Groot M.P., Kooke R., Knoben N., Vergeer P., Keurentjes J. J., Ouborg N. J. et al. 2016 Effects of multi-generational stress exposure and offspring environment on the expression and persistence of transgenerational effects in Arabidopsis thaliana. PLoS One 11, e0151566.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Grossniklaus U., Kelly W. G., Ferguson-Smith A. C., Pembrey M. and Lindquist S. 2013 Transgenerational epigenetic inheritance: how important is it? Nat. Rev. Genet. 14, 228–235.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Halfmann R., Alberti S. and Lindquist S. 2010 Prions, protein homeostasis, and phenotypic diversity. Trends Cell Biol. 20, 125–133.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Halfmann R. and Lindquist S. 2010 Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330, 629–632.PubMedCrossRefGoogle Scholar
  51. Halfmann R., Jarosz D.F., Jones S. K., Chang A., Lancaster A. K. and Lindquist S. 2012 Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482, 363–368.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Halfmann R., Alberti S., Krishnan R., Lyle N., O’Donnell C. W., King O.D. et al. 2011 Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Mol. Cell 43, 72–84.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heard E. and Martienssen R. A. 2014 Transgenerational Epigenetic Inheritance: myths and mechanisms. Cell 157, 95–109.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Herman J. J., Spencer H. G., Donohue K. and Sultan S. E. 2013 How stable ‘should’ epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution 68, 632–643.PubMedCrossRefGoogle Scholar
  55. Herman J. J. and Sultan S. E. 2016 DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc. Roy. Soc. B 283, 1561.CrossRefGoogle Scholar
  56. Ho M. and Saunders P. T. 1979 Beyond Neo-Darwinism–an epigenetic approach to evolution. J. Theor. Biol. 78, 573–591.PubMedCrossRefGoogle Scholar
  57. Hövel I., Pearson N.A. and Stam M. 2015 Cis-acting determinants of paramutation. Sem. Cell Dev. Biol. 44, 22–32.CrossRefGoogle Scholar
  58. Holeski L. M., Jander G. and Agrawal A. A. 2012 Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol. Evol. 27, 618–626.PubMedCrossRefGoogle Scholar
  59. Hollick J.B. 2012 Paramutation: a trans-homolog interaction affecting heritable gene regulation. Curr. Opin. Plant Biol. 15, 536–543.PubMedCrossRefGoogle Scholar
  60. Holmes D. L., Lancaster A. K., Lindquist S. and Halfmann R. 2013 Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153, 153–165.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Iwasaki M. and Paszkowski J. 2014 Epigenetic memory in plants. EMBO J. 33, 1987–1998.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jablonka E. 2012 Epigenetic variations in heredity and evolution. Clin. Pharmacol. Therapeut. 92, 683–688.CrossRefGoogle Scholar
  63. Jablonka E. 2013 Epigenetic inheritance and plasticity: The responsive germline. Prog. Biophys. Mol. Biol. 111, 99–107.PubMedCrossRefGoogle Scholar
  64. Jablonka E. and Lamm E. 2012 Commentary: The epigenotype–a dynamic network view of development. Int. J. Epidemiol. 41, 16–20.PubMedCrossRefGoogle Scholar
  65. Jarosz D. F., Lancaster A. K., Brown J. C. S. and Lindquist S. 2014 An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell 158, 1072–1082.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jarosz D. F., Brown J. C., Walker G. A., Datta M. S., Ung W.L., Lancaster A. K. et al. 2014 Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158, 1083–1093.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Karpinets T. V. and Foy B. D. 2005 Tumorigenesis: the adaptation of mammalian cells to sustained stress environment by epigenetic alterations and succeeding matched mutations. Carcinogenesis 26, 1323–1332.PubMedCrossRefGoogle Scholar
  68. King O. D. and Masel J. 2007 The evolution of bet-hedging adaptations to rare scenarios. Theor. Popul. Biol. 72, 560–575.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kinoshita T. and Seki M. 2014 Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol. 55, 1859–1863.PubMedCrossRefGoogle Scholar
  70. Koonin V. 2013 Does the central dogma still stand? Biol. Direct 7, 27.CrossRefGoogle Scholar
  71. Kryndushkin D. S., Alexandrov I. M., Ter-Avanesyan M. D. and Kushnirov V. V. 2003 Yeast [\({PSI}^{+}\)] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643.PubMedCrossRefGoogle Scholar
  72. Kronholm I. and Collins S. 2016 Epigenetic mutations can both help and hinder adaptive evolution. Mol. Ecol. 25, 1856–1868.PubMedCrossRefGoogle Scholar
  73. Kumar A. and Bennetzen J. L. 1999 Plant retrotransposons. Ann. Rev. Genet. 33, 479–532.PubMedCrossRefGoogle Scholar
  74. Lacroute F. 1971 Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 206, 519–522.Google Scholar
  75. Lafon-Placette C. and Köhler C. 2015 Epigenetic mechanisms of postzygotic reproductive isolation in plants. Curr. Opin. Plant Biol. 23, 39–44.PubMedCrossRefGoogle Scholar
  76. Laland K., Uller T., Feldman M., Sterelny K., Müller G. B., Moczek A. et al. 2014 Does evolutionary theory need a rethink? Nature 514, 161–164.PubMedCrossRefGoogle Scholar
  77. Lancaster A. K., Bardill J. P., True H. L. and Masel J. 2010 The spontaneous appearance rate of the yeast prion [\({PSI}^{+}\)] and its implications for the evolution of the evolvability properties of the [\({PSL}^+\)] system. Genetics 184, 393–400.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lancaster A. K. and Masel J. 2009 The evolution of reversible switches in the presence of irreversible mimics. Evolution 63, 2350–2362.Google Scholar
  79. Lancaster A. K., Nutter-Upham A., Lindquist S. and King O. D. 2014 PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30, 2501–2502.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lankinen A., Abreha K. B., Alexandersson E., Andersson S. and Andreasson E. 2016 Nongenetic inheritance of induced resistance in a wild annual plant. Phytopathology 106, 877–883.PubMedCrossRefGoogle Scholar
  81. Liebman S. W. and Chernoff Y. O. 2012 Prions in yeast. Genetics 191, 1041–1072.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lim J. P. and Brunet A. 2013 Bridging the transgenerational gap with epigenetic memory. Trends Genet. 29, 176–186.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lippman Z., Gendrel A. V., Black M., Vaughn M. W., Dedhia N., McCombie W. R. et al. 2004 Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476.PubMedCrossRefGoogle Scholar
  84. MacLea K. S., Paul K. R., Ben-Musa Z., Waechter A., Shattuck J.E., Gruca M. et al. 2014 Distinct amino acid compositional requirements for formation and maintenance of the [\({PSI}^{+}\)] prion in yeast. Mol. Cell. Biol. 35, 899–911.PubMedCrossRefGoogle Scholar
  85. March Z. M., King O. and Shorter J. 2016 Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res. 1647, 9–18.PubMedCrossRefGoogle Scholar
  86. Mathieu O., Reinders J., Caikovski M., Smathajitt C. and Paszkowski J. 2007 Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130, 851–862.PubMedCrossRefGoogle Scholar
  87. McClintock B. 1984 The significance of responses of the genome to challenge. Science 226, 792–801.PubMedCrossRefGoogle Scholar
  88. Molinier J., Ries G., Zipfel C. and Hohn B. 2006 Transgeneration memory of stress in plants. Nature 442, 1046–1049.PubMedCrossRefGoogle Scholar
  89. Morgan H. D., Sutherland H. G., Martin D. I. and Whitelaw E. 1999 Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318.Google Scholar
  90. Newby G. A. and Lindquist S. 2013 Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol. 23, 251–259.PubMedCrossRefGoogle Scholar
  91. Newnam G. P., Birchmore J.L. and Chernoff Y.O. 2011 Destabilization and recovery of a yeast prion after mild heat shock. J. Mol. Biol. 408, 432–448.PubMedPubMedCentralCrossRefGoogle Scholar
  92. O’Dea R. E., Noble D. W. A., Johnson S. L., Hesselson D. and Nakagawa S. 2016 The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. Environ. Epigen. 2, 1–12.CrossRefGoogle Scholar
  93. Ost A., Lempradl A., Casas E., Weigert M., Tiko T., Deniz M. et al. 2014 Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352–1364.PubMedCrossRefGoogle Scholar
  94. Paszkowski J. and Grossniklaus U. 2011 Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant Biol. 14, 195–203.PubMedCrossRefGoogle Scholar
  95. Patel B. K., Gavin-Smyth J. and Liebman S. W. 2009 The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat. Cell Biol. 11, 344–349.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Patino M. M., Liu J., Glover J. R. and Lindquist S. 1996 Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626.PubMedCrossRefGoogle Scholar
  97. Pecinka A. and Mittelsten Scheid O. 2012 Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol. 53, 801–808.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Pigliucci M. 2007 Do we need an extended evolutionary synthesis? Evolution 61, 2743–2749.PubMedCrossRefGoogle Scholar
  99. Pilu R. 2015 Paramutation phenomena in plants. Sem. Cell Dev. Biol. 44, 2–10.CrossRefGoogle Scholar
  100. Probst A. V. and Mittelsten Scheid O. 2015 Stress-induced structural changes in plant chromatin. Curr. Opin. Plant Biol. 27, 8–16.PubMedCrossRefGoogle Scholar
  101. Radford E. J., Ito M., Shi H., Corish J. A., Yamazawa K., Isganaitis E., Seisenberger S. et al. 2014 In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 785.CrossRefGoogle Scholar
  102. Rakyan V. K., Chong S., Champ M. E., Cuthbert P. C., Morgan H. D., Luu K.V. et al. 2003 Transgenerational inheritance of epigenetic states at the murine Axin (Fu) allele occurs after maternal and paternal transmission. Proc. Natl. Acad. Sci. USA 100, 2538–2543.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Remy J. J. 2010 Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 20, R877–R878.PubMedCrossRefGoogle Scholar
  104. Reidy M. and Masison D. C. 2011 Modulation and elimination of yeast prions by protein chaperones and co-chaperones. Prion 5, 245–249.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Rikhvanov E. G., Romanova N. V. and Chernoff Y. O. 2007 Chaperone effects on prion and nonprion aggregates. Prion 1, 217–222.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rogoza T., Goginashvili A., Rodionova S., Ivanov M., Viktorovskaya O., Rubel A. et al. 2010 Non-Mendelian determinant [\(\text{ ISP }^{+}\)] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc. Natl. Acad. Sci. USA 107, 10573–10577.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Romanova N. V. and Chernoff Y. O. 2009 Hsp104 and prion propagation. Protein Pept. Lett. 16, 598–605.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ronsseray S. 2015 Paramutation phenomena in non-vertebrate animals. Sem. Cell Dev. Biol. 44, 39–46.CrossRefGoogle Scholar
  109. Ross E. D., Baxa U. and Wickner R. B. 2004 Scrambled prion domains form prions and amyloid. Mol. Cell. Biol. 24, 7206–13.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sapetschnig A., Sarkies P., Lehrbach N.J. and Miska E. 2015 Tertiary siRNAs mediate paramutation in C. elegans. PLoS Genet. 11, e1005078.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Schlichting C. D. and Wund M. A. 2014 Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 68, 656–672.PubMedCrossRefGoogle Scholar
  112. Schmitz R.J. 2014 The secret garden-epigenetic alleles underlie complex traits. Science 343, 1082–1083.PubMedCrossRefGoogle Scholar
  113. Schmitz R. J. and Ecker J. R. 2012 Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci. 17, 149–154.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Seong K.-Y., Dong L., Shimizu H., Nakamura R. and Ishii S. 2011 Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061.PubMedCrossRefGoogle Scholar
  115. Shorter J. and Lindquist S. 2005 Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 6, 435–450.PubMedCrossRefGoogle Scholar
  116. Shorter J. and Lindquist S. 2008 Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J. 27, 2712–2724.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Si K., Lindquist S. and Kandel E. R. 2003 A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115, 879–891.PubMedCrossRefGoogle Scholar
  118. Sideri T. C., Koloteva-Levine N., Tuite M. F. and Grant C. M. 2011 Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J. Biol. Chem. 286, 38924–38931.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Skinner M.K. 2015 Environmental epigenetics and a unified theory of the molecular aspects of evolution: a Neo-Lamarckian concept that facilitates Neo-Darwinian evolution. Genome Biol. Evol. 7, 1296–1302.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sondheimer N. and Lindquist S. 2000 Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172.PubMedCrossRefGoogle Scholar
  121. Stam M., Belele C., Dorweiler J.E. and Chandler V.L. 2002 Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev. 16, 1906–1918.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sung S. and Amasino R. M. 2004 Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159–164.PubMedCrossRefGoogle Scholar
  123. Suzuki G., Shimazu N. and Tanaka M. 2012 A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336, 355–359.Google Scholar
  124. Szyf M. 2015 Nongenetic inheritance and transgenerational epigenetics. Trends Mol. Med. 21, 134–144.PubMedCrossRefGoogle Scholar
  125. Tarutani Y., Shiba H., Iwano M., Kakizaki T., Suzuki G., Watanabe M. et al. 2010 Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature 466, 983–986.PubMedCrossRefGoogle Scholar
  126. Toombs J. A., Liss N. M., Cobble K. R., Ben-Musa Z. and Ross E. D. 2011 [\({PSI}^{+}\)] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. PLoS One 6, e21953.PubMedPubMedCentralCrossRefGoogle Scholar
  127. True H. L. and Lindquist S. 2000 A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483.PubMedCrossRefGoogle Scholar
  128. True H. L., Berlin I. and Lindquist S. L. 2004 Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431, 184–187.PubMedCrossRefGoogle Scholar
  129. Tuite M. F. 2015 Yeast prions: Paramutation at the protein level? Semin. Cell Dev. Biol. 44, 51–61.PubMedCrossRefGoogle Scholar
  130. Tuite M. F. and Serio T. R. 2010 The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat. Rev. Mol. Cell Biol. 11, 823–833.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Turck C. and Coupland G. 2014 Natural variation in epigenetic gene regulation and its effects on plant developmental traits. Evolution 68, 620–631.PubMedCrossRefGoogle Scholar
  132. Tyedmers J., Madariaga M. L. and Lindquist S. 2008 Prion switching in response to environmental stress. PLoS Biol. 6, e294.Google Scholar
  133. Uller T., English S. and Pen I. 2015 When is incomplete epigenetic resetting in germ cells favoured by natural selection? Proc. R. Soc. B 282, 20150682.Google Scholar
  134. Vandegehuchte M. B. and Janssen C.R. 2014 Epigenetics in an ecotoxicological context. Mutat. Res. 764–765, 36–45.CrossRefGoogle Scholar
  135. Verhoeven K. J. F., Vonholdt B. M. and Sork V. L. 2016 Epigenetic studies in ecology and evolution. Mol. Ecol. 25, 1631–1638.PubMedCrossRefGoogle Scholar
  136. Waddington C. H. 1942 The epigenotype. Endeavour 1, 18–20.Google Scholar
  137. Weigel D. and Colot V. 2012 Epialleles in plant evolution. Genome Biol. 13, 249.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wessler S. R. 1988 Phenotypic diversity mediated by the maize transposable elements Ac and Spm. Science 242, 399–405.PubMedCrossRefGoogle Scholar
  139. White S. E., Habera L. F. and Wessler S. R. 1994 Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci. USA 91, 11792–11796.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Whitelaw E. 2015 Disputing Lamarckian epigenetic inheritance in mammals. Genome Biol. 16, 60.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wickner R. B. 1994 [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569.PubMedCrossRefGoogle Scholar
  142. Wickner R. B. 2016 Yeast and fungal prions. Cold Spring Harb. Perspect. Biol. 8, a023531.PubMedCrossRefGoogle Scholar
  143. Wickner R. B., Edskes H. K., Bateman D., Kelly A. C. and Gorkovskiy A. 2011 The yeast prions \([{PSI}^{+}]\) and [URE3] are molecular degenerative diseases. Prion 5, 258–262.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Yan W. 2014 Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Mol. Cell Endocrinol. 398, 24–30.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zabel M.D. and Reid C. 2015 A brief history of prions. FEMS Pathog. Dis. 73, ftv087.Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations