Journal of Genetics

, Volume 96, Issue 1, pp 47–51 | Cite as

Potential emigration of Siberian cattle germplasm on Chirikof Island, Alaska

  • R. G. POPOV
  • M. A. CRONIN


Feral cattle residing in Chirikof Island, Alaska, are relatively distinct from breeds used in commercial production in North America. However, preliminary evidence suggested that they exhibit substantial genetic relationship with cattle from Yakutian region of Siberia. Thus, our objective was to further elucidate quantify the origins, admixture and divergence of the Chirikof Island cattle relative to cattle from Siberia and USA. Subject animals were genotyped at 15 microsatellite loci. Compared with Turano–Mongolian and North American cattle, Chirikof Island cattle had similar variation, with slightly less observed heterozygosity, fewer alleles per locus and a positive fixation index. Analysis of the genetic distances revealed two primary clusters; one that contained the North American breeds and the Kazakh White head, and a second that contained the Yakutian and Kalmyk breeds, and the Chirikof population. Thus, it is suggested that Chirikof Island cattle may be a composite of British breeds emanating from North America and Turano–Mongolian cattle. A potential founder effect, consistent with historical records of the Russian–American period, may contribute to the adaptation of the Chirikof Island cattle to their harsh high-latitude environment. Further study of adaptive mechanisms manifest by these cattle is warranted.


adaptation agricultural history feral livestock genetic diversity microsatellites. 



Funding by Academy of Finland for JK (the Arctic Ark-project, decision no. 286040) is appreciated.


  1. Baimukanov A. B., Borozdin E. K., Dmitriev N. G., Ernst L. K., Fisinin V. I., Istomin A. A. et al. 1989 Animal genetic resources of the USSR (ed. N. G. Dmitriev and L. K. Ernst). Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
  2. Bancroft H. H. 1886 History of Alaska, 1730–1885. Antiquarian Press, New York, USA.Google Scholar
  3. Buchanan D. S. and Lenstra J. A. 2015 Breeds of cattle. In: The genetics of cattle, 2nd edition. (ed. D. Garrick and A. Ruvinsky), CABI, Oxfordshire, UK.Google Scholar
  4. Decker J. E., McKay S. D., Rolf M. M., Kim J., Alcalá A. M., Sonstegard T. S. et al. 2014 Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 10, e1004254.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Decker J. E., Taylor J. F., Kantanen J., Millbrooke A., Schnabel R. D., Alexander L. J. and MacNeil M. D. 2016 Origins of cattle on Chirikof Island, Alaska elucidated from genome-wide SNP genotypes. Heredity 116, 502–505.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Drucker A. G., Gomez V. and Anderson S. 2001 The economic valuation of farm animal genetic resources: a survey of available methods. Ecol. Econ. 36, 1–18.CrossRefGoogle Scholar
  7. Elliott H. W. 1886 Our Arctic Province, Alaska and the Seal Islands. Charles Scribner’s Sons, New York, USA.CrossRefGoogle Scholar
  8. Excoffier L., Smouse P. and Quattro J. 1992 Analysis of molecular variance inferred for metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.PubMedPubMedCentralGoogle Scholar
  9. FAO 1997 Nations discuss utilization and conservation of genetic resources. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  10. FAO 2004 Measurement of domestic animal diversity. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  11. Fields W. M. 2000 Now it can be told: stories of Alaskan pioneer ranchers. Publication Consultants. Anchorage.Google Scholar
  12. Foulley J. -L. and Ollivier L. 2006 Estimating allelic richness and its diversity. Livestk. Sci. 101, 150–158.CrossRefGoogle Scholar
  13. Gibson J. R. 1976 Imperial Russia in Frontier America. Oxford University Press, New York, USA.Google Scholar
  14. Goudet J. 2001 FSTAT (version a program to estimate and test gene diversities and fixation indices. Lausanne University, Lausann.Google Scholar
  15. Gower J. 1998 Principal coordinates analysis. In Encyclopedia of biostatistics, vol. 5 (ed. P. Armitage and T. Coulton), pp. 3514–3518. John Wiley and Sons, Inc., New York, USA.Google Scholar
  16. Granberg L., Partanen U. and Soini K. 2006 Social transition in the eyes of Yakutian cattle. In Proceedings of the International Conference on World Sustainable Development Outlook 2006 : Global and Local Resources in Achieving Sustainable Development. (ed. A. Ahmed), pp. 12–42. Inderscience Enterprises Limited, Geneva.Google Scholar
  17. Greenbaum G., Alan R., Templeton A. R., Zarmi Y. and Bar-David S. 2014 Allelic richness following population founding events—a stochastic modeling framework incorporating gene flow and genetic drift. PLoS One 9, e115203.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Li M. -H. and Kantanen J. 2010 Genetic structure of Eurasian cattle (Bostaurus) based on microsatellites: clarification for their breed classification. Anim. Genet. 41, 150–158.CrossRefPubMedGoogle Scholar
  19. Li M. -H., Nogovitsina E., Ivanova Z., Erhardt G., Vilkki J., Popov R. et al. 2005 Genetic contribution of indigenous Yakutian cattle to two hybrid populations, revealed by microsatellite variation. Asian-Aust. J. Anim. Sci. 18, 613–619.CrossRefGoogle Scholar
  20. Lídia Colominas L., Edwards C. J., Beja-Pereira A., Vigne J., Silva R. M., Castanyer P. et al. 2015 Detecting the T1 cattle haplogroup in the Iberian Peninsula from neolithic to medieval times: new clues to continuous cattle migration through time. J. Arch. Sci. 59, 110–117.CrossRefGoogle Scholar
  21. Long J. 1975 McCord of Alaska. Dillon Liederbach, Cleveland.Google Scholar
  22. MacNeil M. D., Deaborn D. D., Cundiff L. V., Dinkel C. A. and Gregory K. E. 1989 Effects of inbreeding and heterosis in Hereford females on fertility, calf survival and preweaning growth. J. Anim. Sci. 67, 895–901.CrossRefPubMedGoogle Scholar
  23. MacNeil M. D., Cronin M. A., Blackburn H. D. and Alexander L. J. 2006 Genetic relationships among breeds of beef cattle in the United States that originated from the British Isles, Iberian Peninsula, or West-Central Europe. Proceedings of the 8th World Cong. Genet. Appl. Livestk. Prod., Belo Horizonte, Brazil.Google Scholar
  24. MacNeil M. D., Cronin M. A., Blackburn H. D., Richards C. M., Lockwood D. R. and Alexander L. J. 2007 Genetic relationships between feral cattle from Chirikof Island, Alaska and other breeds. Anim. Genet. 38, 193–197.CrossRefPubMedGoogle Scholar
  25. McKnight T. 1964 Feral livestock in Anglo-America. University of California Press, Berkeley, USA.Google Scholar
  26. McVean G. 2009 A genealogical interpretation of principal components analysis. PLoS Genet. 5, e1000686.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nei M. 1972 Genetic distance between populations. Am. Nat. 106, 283–292.CrossRefGoogle Scholar
  28. d’Oro R. 2003 Alaskan wild cattle herd faces expulsion, Associated Press News Archive, Press, New York, USA.Google Scholar
  29. d’Oro R. 2005 Chirikof cattle will roam alone as dispute simmers. Anchorage Daily News, Anchorage, USA.Google Scholar
  30. Peakall R. and Smouse P. E. 2006 GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295.CrossRefGoogle Scholar
  31. Peakall R. and Smouse P. E. 2012 GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Reed D. H. and Frankham R. 2003 Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237.CrossRefGoogle Scholar
  33. Ruzina M. N., Shtyfurko T. A., Mohammadabadi M. R., Gendzhieva O. V., Tsedev T. and Sulimova G. E. 2010 Polymorphism of the BoLA-DRB3 gene in the Mongolian, Kalmyk, and Yakut cattle breeds. Russ. J. Genet. 46, 456–463.CrossRefGoogle Scholar
  34. Saitou N. and Nei M. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  35. Sonnen K. L. 2014 Chirikof Island range survey, July 2014, USDA Natural Resources Conservation Service, Homer.Google Scholar
  36. Toro M., Fernández J. and Caballero A. 2009 Molecular characterizationof breeds and its use in conservation. Livest. Sci. 120, 174–195.CrossRefGoogle Scholar
  37. USDA 1929 Survey of the grazing possibilities of the Aleutian Islands and vicinity. US Department of Agriculture, Washington, USA.Google Scholar
  38. Van Vuren D. and Hedrick P. W. 1989 Genetic conservation in feral populations of livestock. Conserv. Biol. 3, 312–317.Google Scholar
  39. Wright S. 1921 Systems of mating. I. The biometric relations between parent and offspring. Genetics 6, 111–123.PubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

    • 1
    • 2
    • 2
    • 3
    • 4
    • 5
    • 6
  • R. G. POPOV
    • 7
    • 8
    • 9
  • M. A. CRONIN
    • 10
  1. 1.Delta GMiles CityUSA
  2. 2.USDA Agricultural Research ServiceMiles CityUSA
  3. 3.Green TechnologyNatural Resources Institute FinlandJokioinenFinland
  4. 4.Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
  5. 5.Board of Agricultural Office of Eveno-Bytantaj RegionBatagay-AlytaRussia
  6. 6.Autumnwood Ct SE 22344YelmUnited States
  7. 7.Yakutian Research Institute of Agriculture (FGBNU Yakutskij NIISH)ul. Bestyzhevo-Marlinskogo 23/1Russia
  8. 8.Department of BiologyUniversity of TurkuTurkuFinland
  9. 9.Embry-Riddle Aeronautical UniversityBeachUSA
  10. 10.University of Alaska School of Natural Resources and ExtensionPalmerUSA

Personalised recommendations