Journal of Genetics

, Volume 95, Issue 2, pp 341–347 | Cite as

Identification of genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig

  • TAKAHISA YAMADAEmail author


Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from musculus longissimus muscle tissues of selected pigs with extreme expected breeding values at the age of 100 kg. Three upregulated genes (EEF1A2, TSG101 and TTN) and six downregulated genes (ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7) in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis confirmed difference in expression profiles of the identified genes in musculus longissimus muscle tissues between the two Landrace weanling pig groups with divergent genetic propensity for growth rate. Further, differential expression of the identified genes except for the TTN was validated by Western blot analysis. Additionally, the eight genes other than the ATP5C1 co-localized with the same chromosomal positions as QTLs that have been previously identified for growth rate traits. Finally, the changes of expression predicted from gene function suggested association of upregulation of expression of the EEF1A2, TSG101 and TTN genes and downregulation of the ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7 gene expression with increased growth rate. The identified genes will provide an important insight in understanding of the molecular mechanism underlying growth rate in Landrace pig breed.


expression profile growth rate Landrace pig skeletal muscle suppression subtractive hybridization 



This work was supported by a grant-in-aid for Scientific Research (C) (no. 24580406) from Ministry of Education, Science, Sports, and Culture of Japan.


  1. Altschul S. F., Gish W., Miller W., Myers E. W. and Lipman D. J. 1990 Basic local alignment search tool. J. Mol. Biol. 215, 403–410.CrossRefPubMedGoogle Scholar
  2. Bernard C., Cassar-Malek I., Renand G. and Hocquette J. F. 2009 Changes in muscle gene expression related to metabolism according to growth potential in young bulls. Meat Sci. 82, 205–212.CrossRefPubMedGoogle Scholar
  3. Cagnazzo M., te Pas M. F., Priem J, de Wit A. A., Pool M. H., Davoli R. et al. 2006 Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics. J. Anim. Sci. 84, 1–10.PubMedGoogle Scholar
  4. Cánovas A., Pena R. N., Gallardo D., Ramírez O., Amills M. and Quintanilla R. 2012 Segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population. PLoS One 7, e35583.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Casas-Carrillo E., Prill-Adams A., Price S. G., Clutter A. C. and Kirkpatrick B. W. 1997 Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine. Anim. Genet. 28, 88–93.CrossRefPubMedGoogle Scholar
  6. Davoli R., Braglia S., Russo V., Varona L. and te Pas M. F. 2011 Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs. J. Anim. Breed Genet. 128, 15–27.CrossRefPubMedGoogle Scholar
  7. Diatchenko L., Lau Y. F., Campbell A. P., Chenchik A., Moqadam F., Huang B. et al. 1996 Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fredeen H. T. and Mikami H. 1986 Mass selection in a pig population: correlated changes in carcass merit. J. Anim. Sci. 62, 1546–1554.Google Scholar
  9. Gross R. 1986 Modes of growth and regeneration. In Human growth: a comprehensive treatise (ed. F. Falkner and J. Tanner J.), vol. 1, pp. 3–26, Plenum Press, New York, USA.Google Scholar
  10. Hammond K. and Leitch H. W. 1998 Genetic resources and the global programme for their management. In The genetics of the pig (ed. M. F. Rothschild and A. Ruvinsky), pp. 430. CAB International, New York, USA.Google Scholar
  11. Hocquette J. F., Ortigues-Marty I., Pethick D., Herpin P. and Fernandez X. 1998 Nutritional and hormonal regulation of energy metabolism in skeletal muscles of meat-producing animals. Livest. Prod. Sci. 56, 115–143.CrossRefGoogle Scholar
  12. Hu Z. L. and Reecy J. M. 2007 Animal QTLdb: beyond a repository. A public platform for QTL comparisons and integration with diverse types of structural genomic information. Mamm. Genome 18, 1–4.CrossRefPubMedGoogle Scholar
  13. IJlst L., Ruiter J. P., Hoovers J. M., Jakobs M. E. and Wanders R. J. 1996 Common missense mutation G1528C in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and expression of the mutant protein, mutation analysis on genomic DNA and chromosomal localization of the mitochondrial trifunctional protein alpha subunit gene. J. Clin. Invest. 98, 1028–1033.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Itoh H., Takahashi A., Adachi K., Noji H., Yasuda R., Yoshida M. et al. 2004 Mechanically driven ATP synthesis by F1-ATPase. Nature 427, 465–468.CrossRefPubMedGoogle Scholar
  15. Itoh-Satoh M., Hayashi T., Nishi H., Koga Y., Arimura T., Koyanagi T. et al. 2002 Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 291, 385–393.CrossRefPubMedGoogle Scholar
  16. Jonassen T. and Clarke C. F. 2000 Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis. J. Biol. Chem. 275, 12381–12387.CrossRefPubMedGoogle Scholar
  17. Kim N. K., Park H. R., Lee H. C., Yoon D., Son E. S., Kim Y. S. et al. 2010 Comparative studies of skeletal muscle proteome and transcriptome profilings between pig breeds. Mamm. Genome 21, 307–319.CrossRefPubMedGoogle Scholar
  18. Krempler, Henry M. D., Triplett A. A. and Wagner K. U. 2002 Targeted deletion of the Tsg101 gene results in cell cycle arrest at G1/S and p53-independent cell death. J. Biol. Chem. 277, 43216–43223.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lefaucheur L., Milan D., Ecolan P. and Le Callennec C. 2004 Myosin heavy chain composition of different skeletal muscles in Large White and Meishan pigs. J. Anim. Sci. 82, 1931–1941.PubMedGoogle Scholar
  20. Li A., Mo D., Zhao X., Jiang W., Cong P., He Z. et al. 2013 Comparison of the longissimus muscle proteome between obese and lean pigs at 180 days. Mamm. Genome 24, 72–79.CrossRefPubMedGoogle Scholar
  21. Lin C. S. and Hsu C. W. 2005 Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs. J. Anim. Sci. 83, 2075–2086.PubMedGoogle Scholar
  22. Liu F., Yu Y., Jin Y. and Fu S. 2010 TSG101, identified by screening a cancer cDNA library and soft agar assay, promotes cell proliferation in human lung cancer. Mol. Biol Rep. 37, 2829–2838.CrossRefPubMedGoogle Scholar
  23. Muráni E., Murániová M., Ponsuksili S., Schellander K. and Wimmers K. 2007 Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity. BMC Dev. Biol. 7, 109.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ngoka L. C. 2008 Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers. Proteome Sci. 6, 30.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ruest L. B., Marcotte R. and Wang E. 2002 Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis . J. Biol. Chem. 277, 5418–5425.CrossRefPubMedGoogle Scholar
  26. Schiaffino S. and Reggiani C. 1994 Myosin isoforms in mammalian skeletal muscle. J Appl. Physiol. 77, 493–501.PubMedGoogle Scholar
  27. Schmittgen T. D. and Livak K. J. 2008 Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108.CrossRefPubMedGoogle Scholar
  28. Serão N. V., Veroneze R., Ribeiro A. M., Verardo L. L., Braccini Neto J., Gasparino E. et al. 2011 Candidate gene expression and intramuscular fat content in pigs. J. Anim. Breed Genet. 128, 28–34.CrossRefPubMedGoogle Scholar
  29. Sudre K., Cassar-Malek I., Listrat A., Ueda Y., Leroux C., Jurie C. et al. 2005 Biochemical and transcriptomic analyses of two bovine skeletal muscles in Charolais bulls divergently selected for muscle growth. Meat Sci. 70, 267–277.CrossRefPubMedGoogle Scholar
  30. Tang Z., Li Y., Wan P., Li X., Zhao S., Liu B. et al. 2007 LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol. 8, R115.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wimmers K., Ponsuksili S. and Schellander K. 2004 The muscle transcriptome. In Muscle development of livestock animals: physiology, genetics, and meat quality (ed. M. F. W. te Pas, H. P. Haagsman and M. E. Everts), pp. 225–245. CAB International, Oxfordshire, UK.Google Scholar
  32. Wimmers K., Ngu N. T., Jennen D. G., Tesfaye D., Murani E., Schellander K. et al. 2008 Relationship between myosin heavy chain isoform expression and muscling in several diverse pig breeds. J. Anim. Sci. 86, 795–803.CrossRefPubMedGoogle Scholar
  33. Xu H., Xu Y., Liang X., Wang Y., Jin F., Liu D. et al. 2013 Porcine skeletal muscle differentially expressed gene ATP5B: molecular characterization, expression patterns, and association analysis with meat quality traits. Mamm. Genome 24, 142–150.CrossRefPubMedGoogle Scholar
  34. Xu Y. J., Jin M. L., Wang L. J., Zhang A. D., Zuo B., Xu D. Q. et al. 2009 Differential proteome analysis of porcine skeletal muscles between Meishan and Large White. J. Anim. Sci. 87, 2519–2527.CrossRefPubMedGoogle Scholar
  35. Yamada T., Sasaki S., Sukegawa S., Takahagi Y., Morita M., Murakami H. et al. 2011 Possible association of single nucleotide polymorphism in titin gene with growth-related trait in Japanese Black beef cattle. J. Anim. Vet. Adv. 10, 2603–2606.CrossRefGoogle Scholar
  36. Zhang Q., Xiao X., Li M., Li W., Yu M., Zhang H. et al. 2012 Telmisartan improves kidney function through inhibition of the oxidative phosphorylation pathway in diabetic rats. J. Mol. Endocrinol. 49, 35–46.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

    • 1
    • 2
    • 1
    • 1
    • 1
    • 1
    • 3
    • 1
    Email author
  1. 1.Faculty of Agriculture, Department of AgrobiologyNiigata UniversityNiigataJapan
  2. 2.Research and Development Center, NH Foods Ltd.TsukubaJapan
  3. 3.Department of Natural SciencesInternational Christian UniversityMitakaJapan

Personalised recommendations