Advertisement

Journal of Genetics

, Volume 93, Issue 2, pp 379–388 | Cite as

Roles of the troponin isoforms during indirect flight muscle development in Drosophila

  • SALAM HEROJEET SINGH
  • PRABODH KUMAR
  • NALLUR B. RAMACHANDRAEmail author
  • UPENDRA NONGTHOMBAEmail author
RESEARCH ARTICLE

Abstract

Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, a majority of the myofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.

Keywords

troponin isoforms myofibril flight muscle Drosophila

Notes

Acknowledgements

We thank our laboratory members for their critical comments. This work was supported by financial assistance from Department of Biotechnology, Department of Science and Technology, Government of India, New Delhi and Indian Institute of Science, Bangalore.

References

  1. Agianian B., Krzic U., Qiu F., Linke W. A., Leonard K. and Bullard B. 2004 A troponin switch that regulates muscle contraction by stretch instead of calcium. EMBO J. 23, 772–729.Google Scholar
  2. Barbas J. A., Galceran J., Torroja L., Prado A. and Ferrús A. 1993 Abnormal muscle development in the heldup3 mutant of Drosophila melanogaster is caused by a splicing defect affecting selected troponin I isoforms. Mol. Cell. Biol. 13, 1433–1439.Google Scholar
  3. Benoist P., Mas J. A., Marco R. and Cervera M. 1998 Differential muscle-type expression of the Drosophila troponin T gene. A 3-base pair microexon is involved in visceral and adult hypodermic muscle specification. J. Biol. Chem. 273, 7538–7546.Google Scholar
  4. Bullard B. and Pastore A. 2011 Regulating the contraction of insect flight muscle. J. Muscle Res. Cell Motil. 32, 303–313.Google Scholar
  5. De Nicola G., Burkart C., Qiu F., Agianian B., Labeit S., Martin S. et al. 2007 The structure of Lethocerus troponin C: insights into the mechanism of stretch activation in muscles. Structure 15, 813–824.Google Scholar
  6. Dietzl G., Chen D., Schnorrer F., Su K. C., Barinova Y., Fellner M. et al. 2007 A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156.Google Scholar
  7. Drummond D. R., Hennessey E. S. and Sparrow J. C. 1991 Characterization of missense mutations in the Act88F gene of Drosophila melanogaster. Mol. Gen. Genet. 226, 70–80.Google Scholar
  8. Farah C. S. and Reinach F. C. 1995 The troponin complex and regulation of muscle contraction. FASEB J. 9, 755–767.Google Scholar
  9. Fyrberg C., Ketchum A., Ball E. and Fyrberg E. 1998 Characterization of lethal Drosophila melanogaster alpha-actinin mutants. Biochem. Genet. 36, 299–310.Google Scholar
  10. Gordon A. M., Homsher E. and Regnier M. 2000 Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924.Google Scholar
  11. Herranz R., Mateos J. and Marco R. 2005a Diversification and independent evolution of troponin C genes in insects. J. Mol. Evol. 60, 31–44.Google Scholar
  12. Herranz R., Mateos J., Mas J. A., Garcia-Zaragoza E., Cervera M. and Marco R. 2005b The co-evolution of insect muscle TpnT and TpnI gene isoforms. Mol. Biol. Evol. 22, 2231–2242.Google Scholar
  13. Johnston J. J., Kelley R. I., Crawford T. O., Morton D. H., Agarwala R., Koch T. et al. 2000 A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am. J. Hum. Genet. 67, 814–821.Google Scholar
  14. Krzic U., Rybin V., Leonard K. R., Linke W. A. and Bullard B. 2010 Regulation of oscillatory contraction in insect flight muscle by troponin. J. Mol. Biol. 397, 110–118.Google Scholar
  15. Linari M., Reedy M. K., Reedy M. C., Lombardi V. and Piazzesi G. 2004 Ca-activation and stretch-activation in insect flight muscle. Biophys. J. 87, 1101–1111.Google Scholar
  16. Marden J. H. 2006 Functional and ecological effects of isoform variation in insect flight muscle. In: Nature’s versatile engine: insect flight muscle inside and out (ed) J. O. Vigoreaux, pp. 214–220. Landes Bioscience/Eurekah.com. Texas, USA.Google Scholar
  17. Marin M. C., Rodriguez J. R. and Ferrus A. 2004 Transcription of Drosophila Troponin I gene is regulated by two conserved, functionally identical, synergistic elements. Mol. Biol. Cell. 15, 1185–1196.Google Scholar
  18. Marston S. B. and Redwood C. S. 2003 Modulation of thin filament activation by breakdown or isoform switching of thin filament proteins. Circ. Res. 93, 1170–1178.Google Scholar
  19. Martin S. R., Avella G., Adrover M, de Nicola G. F., Bullard B. and Pastore A. 2011 Binding properties of the calcium-activated F2 isoform of Lethocerus troponin C. Biochemistry 50, 1839–1847.Google Scholar
  20. Mas J. A., Garcia-Zaragoza E. and Cervera M. 2004 Two functionally identical modular enhancers in Drosophila troponin T gene establish the correct protein levels in different muscle types. Mol. Biol. Cell. 15, 1931–1945.Google Scholar
  21. McArdle K., Allen T. S. and Bucher E. A. 1998 Ca2+-dependent muscle dysfunction caused by mutation of the Caenorhabditis elegans troponin T-1 gene. J. Cell Biol. 143, 1201–1213.Google Scholar
  22. Miller R. C., Schaaf R., Maughan D. W. and Tansey T. R. 1993 A non-flight muscle isoform of Drosophila tropomyosin rescues an indirect flight muscle tropomyosin mutant. J. Muscle Res. Cell. Motil. 14, 85–98.Google Scholar
  23. Moore J. R. 2006 Stretch activation: towards a molecular mechanism. In Nature’s versatile engine: insect flight muscle inside and out (ed) J. O. Vigoreaux, pp. 44–60. Landes Bioscience/Eurekah.com.Google Scholar
  24. Morimoto S., Lu Q. W., Harada K., Takahashi-Yanaga F., Minakami R. et al. 2002 Ca2+ desensitizing effect of a deletion mutation Delta K210 in cardiac troponin T that causes familial dilated cardiomyopathy. Proc. Natl. Acad. Sci. USA 99, 913–918.Google Scholar
  25. Myers C. D., Goh P. Y., Allen T. S., Bucher E. A. and Bogaert T. 1996 Developmental genetic analysis of troponin T mutations in striated and non striated muscle cells of Caenorhabditis elegans. J. Cell Biol. 132, 1061–1077.Google Scholar
  26. Nongthomba U. and Ramachandra N. B. 1999 A direct screen identifies new flight muscle mutants on the Drosophila second chromosome. Genetics 153, 261–274.Google Scholar
  27. Nongthomba U., Ansari M., Thimmaiya D., Stark M. and Sparrow J. C. 2007 Aberrant splicing of an alternative exon in the Drosophila troponin-T gene affects flight muscle development. Genetics 177, 295–306.Google Scholar
  28. Nongthomba U., Cummins M., Clark S., Vigoreaux J. O. and Sparrow J. C. 2003 Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 164, 209–222.Google Scholar
  29. Nongthomba U., Clark S., Cummins M., Ansari M., Stark M. and Sparrow J. C. 2004 Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle. J. Cell. Sci. 117, 1795–1805.Google Scholar
  30. O’Kane C. J. and Gehring W. J. 1987 Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. USA 84, 9123–9127.Google Scholar
  31. Ohte N., Miyoshi I., Sane D. C. and Little W. C. 2009 Zebrafish with antisense-knockdown of cardiac troponin C as a model of hereditary dilated cardiomyopathy. Circ. J. 73, 1595–1596.Google Scholar
  32. Orfanos Z. and Sparrow J. C. 2013 Myosin isoform switching during assembly of Drosophila flight muscle thick filament lattice. J. Cell Sci. 126, 139–148.Google Scholar
  33. Peckham M., Molloy J. E., Sparrow J. C. and White D. C. 1990 Physiological properties of the dorsal longitudinal flight and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J. Muscle Res. Cell Motil. 11, 203–215.Google Scholar
  34. Perry S. V. 1998 Troponin T: genetics, properties and function. J. Muscle Res. Cell Motil. 19, 575–602.Google Scholar
  35. Potter J. D. and Gergely J. 1975 The calcium and magnesium binding sites on troponin and their role in the regulation ofmyofibrillar adenosine triphosphate. J. Biol. Chem. 250, 4628–4633.Google Scholar
  36. Qiu F., Lakey A., Agianian B., Hutchings A., Butcher G. W., Labeit S. et al. 2003 Troponin C in different insect muscle types: identification of two isoforms in Lethocerus, Drosophila and Anopheles that are specific to asynchronous flight muscle in the adult insect. Biochem. J. 371, 811–821.Google Scholar
  37. Rai M. and Nongthomba U. 2013 Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size. Exp. Cell Res. 319, 2566–2577.Google Scholar
  38. Roberts R. and Sigwart U. 2001 New concepts in hypertrophic cardiomyopathies, part I. Circulation 104, 2113–2116.Google Scholar
  39. Sahota V. K., Grau B. F., Mansilla A. and Ferrús A. 2009 Troponin I and Tropomyosin regulate chromosomal stability and cell polarity. J. Cell Sci. 122, 2623–2631.Google Scholar
  40. Sehnert A. J., Huq A., Weinstein B. M., Walker C., Fishman M. and Stainier D. Y. 2002 Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat. Genet. 31, 106–110.Google Scholar
  41. Swank D. M., Knowles A. F., Suggs J. A., Sarsoza F., Lee A., Maughan D. W. et al. 2002 The myosin converter domain modulates muscle performance. Nat. Cell Biol. 4, 312–316.Google Scholar
  42. Towbin J. A. and Bowles N. E. 2002 The failing heart. Nature 415, 227–233.Google Scholar
  43. Vigoreaux J. O. 2006 Molecular basis of muscle structure. In: Muscle development in Drosophila (ed) H. Sink, pp. 143–152. Landes Bioscience/Eurekah.com, Texas.Google Scholar
  44. Wei B. and Jin J. P. 2011 Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch. Biochem. Biophys. 505, 144–154.Google Scholar
  45. Wells L., Edwards K. A. and Bernstein S. I. 1996 Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J. 15, 4454–4459.Google Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  1. 1.Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Studies in ZoologyUniversity of MysoreMysoreIndia

Personalised recommendations