Advertisement

Journal of Genetics

, Volume 93, Issue 1, pp 145–158 | Cite as

Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase gene in Pennisetum purpureum

  • RAN TANG
  • XIANG-QIAN ZHANG
  • YOU-HAN LI
  • XIN-MING XIEEmail author
RESEARCH ARTICLE

Abstract

Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol dehydrogenase (CAD), a key enzyme involved in lignin biosynthesis, catalyses the last step in monolignol synthesis and has a major role in genetic regulation of lignin production. In the present study, a 1 342-bp cDNA fragment of CAD gene, named PpCAD, was isolated from Pennisetum purpureum using strategies of homologous clone and rapid amplification of cDNA end. It was translated into an intact protein sequence including 366 amino acid residues by ORF Finder. The genomic full-length DNA of PpCAD was a 3 738-bp sequence containing four exons and three introns, among which the 114-bp exon was considered to be a conserved region compared with other CADs. Basic bioinformatic analysis presumed that the PpCAD was a nonsecretory and hydrophobic protein with five possible transmembrane helices. The phylogenetic analysis indicated that the PpCAD belonged to the class of bona fide CADs involved in lignin synthesis and it showed a high similarity (nearly 90%) with CAD protein sequences of Sorghum bicolor, Panicum virgatum and Zea mays in Gramineae. Furthere, PpCAD amino acid sequence was demonstrated to have some conserved motifs such as Zn-binding site, Zn-catalytic centre and NADP(H) binding domain after aligning with other bona fide CADs. Three-dimensional homology modelling of PpCAD showed that the protein had some exclusive features of bona fide CADs.

Keywords

lignin biosynthesis cinnamyl alcohol dehydrogenase clone in silico analysis Pennisetum purpureum 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 31272491) and the Specialized Research Fund for the Doctoral Programme of Higher Education of China (no. 20124404110009).

References

  1. Arnold K., Bordoli L., Kopp J. and Schwede T. 2006 The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201.PubMedCrossRefGoogle Scholar
  2. Barakat A., Bangniewska-Zadworna A., Choi A., Plakkat U., Diloreto D. S., Yellanki P. et al. 2009 The cinnamyl alcohol dehydrogenase gene family in Populus, phylogeny, organization, and expression. BMC Plant Bio. 9: 26.CrossRefGoogle Scholar
  3. Baucher M., Chabbert B., Pilate G., Van Doorsselaere J., Tollier M. T., Petit-Conil M. et al. 1996 Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol. 112, 1479–1490.PubMedCentralPubMedGoogle Scholar
  4. Baucher M., Bernard-Vailhe M. A., Chabbert B., Besle J. M., Opsomer C., Van Montagu M. and Botterman J. 1999 Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol. Biol. 39, 437–447.PubMedCrossRefGoogle Scholar
  5. Boerjan W., Ralph J. and Baucher M. 2003 Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546.PubMedCrossRefGoogle Scholar
  6. Brill E. M., Abrahams S., Hayes C. M., Jenkins C. L. D. and Watson J. M. 1999 Molecular characterization and expression of a wound-inducible cDNA encoding a novel cinnamyl-alcohol dehydrogenase enzyme in lucerne. Plant Mol. Biol. 41, 279–291.PubMedCrossRefGoogle Scholar
  7. Bukh C., Nord-Larsen P. H. and Rasmussen S. K. 2012 Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon. J. Exp. Bot. 63, 6223–6236.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen L., Auh C. K., Dowling P., Bell J., Chen F., Hopkins A. et al. 2003 Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol. J. 1, 437–449.Google Scholar
  9. Deng W. W., Zhang M., Wu J. Q., Jiang Z. Z, Tang L., Li Y. Y. et al. 2011 Molecular cloning, functional analysis of three cinnamyl alcohol dehydrogenase (CAD) genes in the leaves of tea plant, Camellia sinensis. J. Plant Physiol. 170, 272–282.CrossRefGoogle Scholar
  10. de Morais R. F., Quedsds D. M., Reis V. M., Urquiaga S., Alves B. J. R. and Boddet R. M. 2011 Contribution of biological nitrogen fixation to elephant grass (Pennisetum purpureum Schum.)Plant Soil 356, 23–34.CrossRefGoogle Scholar
  11. Dixon R. A., Chen F., Guo D. and Parvathi K. 2001 The biosynthesis of monolignols: a ‘metabolic grid’, or independent pathways to guaiacyl and syringyl units?Phytochemistry 57, 1069–1084.PubMedCrossRefGoogle Scholar
  12. Doyle J. and Doyle J. L. 1987 A rapid DNA isolation method for small quantities of fresh tissues. Phytochem. Bull. 19, 11–15.Google Scholar
  13. Emanuelsson O., Nielsen H., Brunak S. and von Heijne G. 2000 Predicting subcellular localization of proteins based on their Nterminal amino acid sequence. J. Mol. Biol. 300, 1005–1016.Google Scholar
  14. Eudes A., Pollet B., Sibout R., Do C. T., Séguin A., Lapierre C. et al. 2006 Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225, 23–39.Google Scholar
  15. Eudes A., George A., Mukerjee P., Kim J. S., Pollet B., Benke P. I. et al. 2012 Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol. J. 10, 609–620.PubMedCrossRefGoogle Scholar
  16. Finn R. D., Mistry J., Tate P., Coggill P., Hegar A., Pollington J. E. et al. 2010 The pfam protein families database. Nucleic Acids Res. 38, 211–222.CrossRefGoogle Scholar
  17. Fu C., Xiao X., Xi Y., Ge Y., Chen F., Bouton J. et al. 2009 Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenerg. Res. 4, 153–164.CrossRefGoogle Scholar
  18. Fu C, Mielenz J. R., Xiao X., Ge Y., Hamilton C. Y., Rodriguez M. et al. 2011 Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl. Acad. Sci. USA 108, 3803–3808.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Fornalé S., Capellades M., Encina A., Wang K., Irar S., Lapierre C. et al. 2012 Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Mol. Plant. 5, 817–830.PubMedCrossRefGoogle Scholar
  20. Galliano H., Cabane M., Eckerskorn C., Lottspeich F., Sandermann H. and Ernst D. 1993 Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.) Plant Mol. Biol. 23, 145–156.Google Scholar
  21. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D. et al. 2005 Protein identification and analysis tools on the ExPASy Server. The Proteomics Protocols Handbook, 571–607.Google Scholar
  22. Goffner D., Van Doorsselaere J., Yahiaoui N., Samaj J., Grima-Pettenati J. and Boudet A. M. 1998 A novel aromatic alcohol dehydrogenase in higher plants: Molecular cloning and expression. Plant Mol. Biol. 36, 755–765.PubMedCrossRefGoogle Scholar
  23. Gouet P., Courcelle E., Stuart D. I. and Métoz F. 1999 ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308.Google Scholar
  24. Guo D. M., Ran J. H. and Wang X. Q. 2010 Evolution of the cinnamyl/sinapyl alcohol dehydrogenase(CAD/SAD) gene family: The emergence of real Lignin is associated with the origin of bona fide CAD. J. Mol. Evol. 71, 202–218.PubMedCrossRefGoogle Scholar
  25. Halpin C., Knight M. E., Grima-Pettenati J., Goffner D., Boudet A. and Schuch W. 1992 Purification and characterization of cinnamyl alcohol dehydrogenase from tobacco stems. Plant Physiol. 98, 12–16.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hirano K., Aya K., Kondo M., Okuno A., Morinak Y. and Matasuoka M. 2012 OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. Plant Cell Rep. 31, 91–101.PubMedCrossRefGoogle Scholar
  27. Hisano H., Nandakumar R. and Wang Z. Y. 2009 Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell. Dev. Biol.-Plant 45, 306–313.CrossRefGoogle Scholar
  28. Hofmann K. and Stoffel W. 1993 TMbase-A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374, 166.Google Scholar
  29. Jackson L. A., Shadle G. L., Zhou R., Nakashima J., Chen F. and Dixon C. R. 2008 Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenerg. Res. 1, 180–192.CrossRefGoogle Scholar
  30. Kim S. J., Kim M. R., Bedgar D. L., Moinuddin S. G. A., Cardenas, C. L., Davin L. B. et al. 2004 Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 1455–1460.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Kim S. J., Kim K. W., Cho M. H., Franceschi V. R., Davin L. B. and Lewis N. G. 2007 Expression of cinnamyl alcohol dehydrogenase and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotation?Phytochemistry 68, 1957–1974.PubMedCrossRefGoogle Scholar
  32. Knight M. E., Halpin C. and Schuch W. 1992 Identification and characterization of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco. Plant Mol. Biol. 19, 739–810.Google Scholar
  33. Li L. G., Cheng X. F., Leshkevich J., Umezawa T., Harding S. A. and Chiang V. L. 2001 The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13, 1567–1585.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Li X., Yang Y., Yao J., Chen G., Li X. H., Zhang Q. et al. 2009 FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol. Biol. 69, 685–697.PubMedCrossRefGoogle Scholar
  35. Lynch D., Lidgett A., Mclnnes R., Huxley H., Jones E., Mahoney N. et al. 2002 Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.)J. Plant Physiol. 159, 653–660.CrossRefGoogle Scholar
  36. Ma Q. H. 2010 Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. J. Exp. Bot. 61, 2735–2744.PubMedCentralPubMedCrossRefGoogle Scholar
  37. MacKay J. J., O’Malley D. M, Presnell T., Booker F. L., Campbell M. M., Whetten R. W. et al. 1997 Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc. Natl. Acad. Sci. USA 94, 8255–8260.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Madakadze I. C., Masamvu T. M., Radiotis T., Li J. and Smith D. L. 2010 Evaluation of pulp and paper making characteristics of elephant grass (Pennisetum purpureum Schum.) and switchgrass (Panicum virgatum L.)Afr. J. Environ. Sci. Techonol. 4, 465–470.Google Scholar
  39. Matthews-Amune O. C. and Kakulu S. 2012 Determination of heavy metals in forage grasses (carpet grass (Axonopus ompressus), guinea grass (Panicum maximum) and elephant grass (Pennisetum purpureum)) in the vicinity of Itakpe Iron Ore Mine, Nigeria. Int. J. Pure Appl. Sci. Technol. 13, 16–25.Google Scholar
  40. Mansell R. L., Gross G. G., Stoeckigt J., Franke H. and Zenk M. H. 1974 Purification and properties of cinnamyl alcohol dehydrogenase from higher plants involved in lignin biosynthesis. Phytochemistry 13, 2427–2436.CrossRefGoogle Scholar
  41. O’Malley D. M., Porter S. and Sederoff R. R. 1992 Purification, characterization, and cloning of cinnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L). Plant Physiol. 98, 1364–1371.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Pandey B., Pandey V. P. and Dwivedi U. N. 2011 Cloning, expression, functional validation and modeling of cinnamyl alcohol dehydrogenase isolated from xylem of Leucaena leucocephala. Protein Expr. Purif. 79, 197–203.PubMedCrossRefGoogle Scholar
  43. Peter G. and Neale D. 2004 Molecular basis for the evolution of xylem lignification. Curr. Opin. Plant Biol. 7, 737–742.PubMedCrossRefGoogle Scholar
  44. Petersen T. N., Brunak S., von Heijine G. and Nielson H. 2011 SignalP 4.0: discriminating signal peptides from transmembrane region. Nat. Methods 8, 785–786.PubMedCrossRefGoogle Scholar
  45. Raes J., Rohde A., Christensen J. H., Van de Peer Y., Boerjan W. 2003 Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 133, 1051–1071.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Ragauskas A., Williams C., Davison B., Britovsek G., Cairney J. and Eckert C. A. 2006 The path forward for biofuels and biomaterials. Science 311, 484–489.PubMedCrossRefGoogle Scholar
  47. Rossmann M.G., Moras D. and Olsen K. W. 1974 Chemical and biological evolution of a nucleotide-binding protein. Nature 250, 194–199.PubMedCrossRefGoogle Scholar
  48. Saathoff A. J., Hargrove M. S., Haas E. J., Tobias C. M., Twigg P., Sattler S. et al. 2012 Switchgrass PviCAD1: Understanding residues important for substrate preferences and activity. Appl. Biochem. Biotechnol. 168, 1086–1100.PubMedCrossRefGoogle Scholar
  49. Saathoff A. J., Tobias C. M., Sattler S. E, Haase J., Twigg P. and Sarath G. 2011 Switchgrass contains two cinnamyl alcohol dehydrogenases involved in lignin formation. Bioenerg. Res. 4, 120–133.CrossRefGoogle Scholar
  50. Saballos A., Ejeta G., Sanchez E., Kang C. and Vermerris W. 2009 A genome-wide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics 181, 783–795.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sibout R., Eudes A., Pollet B., Goujon T., Mila I., Granier F. et al. 2003 Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol. 132, 848–860.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sibout R., Eudes A., Mouille G., Pollet B., Lapierre C., Jouanin L. et al. 2005 CINNAMYL ALCOHOL DEHYDROGENASEC and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17, 2059–2076.Google Scholar
  53. Somssich I. E., Wernert P., Kiedrowski S. and Hahlbrock K. 1996 Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol: NADP + oxidoreductase. Proc. Natl. Acad. Sci. USA 93, 14199–14203.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Tavares C. M., Aubourg S., Lecharny A. and kreis M. 2000 Organization and structural evolution of four multigene families in Arabidopsis thaliana, AtLCAD, AtLGT, AtMYST and AtHD-GL2. Plant Mol. Biol. 42: 703–717.PubMedCrossRefGoogle Scholar
  55. Tobias C. M. and Chow E. K. 2005 Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220, 678–688.PubMedCrossRefGoogle Scholar
  56. Tsuruta S., Ebina M., Nakagawa H., Kawamura O. and Akashi R. 2007 Isolation and characterization of cDNA encoding cinnamyl alcohol dehydrogenase (CAD) in sorghum (Sorghum bicolor (L.) Moench). Grassland Sci. 53, 103—109.Google Scholar
  57. Van Doorsselaere J., Baucher M., Feuillet C., Boudet A. M., Van Montagu M. and Inzé D. 1995 Isolation of cinnamyl alcohol dehydrogenase cDNAs from two important economic species: alfalfa and poplar. Demonstration of a high homology of the gene within angiosperms. Plant Physiol. Biochem. 33, 105–109.Google Scholar
  58. Videira S. S., Oliveira D. M. D, de Morais R. F., Borges W. L., Baldani V. L. and Baldani J. I. 2012 Genetic diversity and plant growth promoting traits of diazotrophic bacteria isolated from two Pennisetum purpureum Schum. genotypes grown in the field. Plant Soil 356, 51–66.CrossRefGoogle Scholar
  59. Weng J. K. and Chapple C. 2010 The origin and evolution of lignin biosynthesis. New Phytol. 187, 273–285.PubMedCrossRefGoogle Scholar
  60. Xie X. M., Zhou F, Zhang X. Q. and Zhang J.M. 2009 Genetic variability and relationship between MT-1 elephant grass and closely related cultivars assessed by SRAP marker. J. Genet. 88, 281–290.PubMedCrossRefGoogle Scholar
  61. Youn B., Camacho R., Moinuddin S. G. A., Lee C., Davin L. B., Lewis N. G. et al. 2006 Crystal structures and catalytic mechanism of the Arabidopsiscinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org. Biomol. Chem. 4, 1687–1697.PubMedCrossRefGoogle Scholar
  62. Zhang K., Qian Q., Huang Z., Wang Y., Li M., Hong L. et al. 2006 GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl alcohol dehydrogenase in rice. Plant Physiol. 140, 972–983.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  • RAN TANG
    • 1
  • XIANG-QIAN ZHANG
    • 1
  • YOU-HAN LI
    • 1
  • XIN-MING XIE
    • 1
    Email author
  1. 1.College of AgricultureSouth China Agricultural UniversityGuangzhouPeople’s Republic of China

Personalised recommendations