Advertisement

Journal of Genetics

, Volume 94, Supplement 1, pp 25–28 | Cite as

Abundance and characteristics of microsatellite markers in Gansu zokor (Eospalax cansus), a fossorial rodent endemic to the Loess plateau, China

  • JUNHU SU
  • LIMIN HUA
  • JING WANG
  • DIANNE M. GLEESON
  • YANMING WEI
  • ROBYN HOWITT
  • WEIHONG JI
ONLINE RESOURCES
  • 147 Downloads

Introduction

Microsatellites, also known as simple sequence repeats (SSRs) or short tandem repeats (STRs) are regions widely distributed in the genome that contain tandem repeats of short nucleotide sequences. Microsatellite motifs are conserved in species. Their abundance, codominance, robustness and ease of amplification by polymerase chain reaction (PCR) make them good genetic markers for a wide range of studies (Geleta and Grausgruber 2012). They have long been utilized for population level studies in the fields of genetics, ecology, evolution conservation and management (Selkoe and Toonen 2006). Unlike nonspecific markers, such as amplified fragment length polymorphism (AFLP), inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD), microsatellites are single-locus DNA markers that require specific primers for PCR amplifications (Zane et al. 2002) and, therefore, designing primers is an important step in their development.

Early, development of...

Keywords

Zokor subterranean rodents microsatellites genomic sequencing 

Notes

Acknowledgements

Funding for this project was provided by the Ministry of Agriculture Public Benefit Research Foundation of China (grant no. 201203041), and the Science and Research Project of the Education Department of Gansu Province, China (grant no. 1102-02). We thank Duckchul Park, Diana Prada and Julia Allwood for laboratory assistance.

References

  1. Allen G. M. 1940 The mammals of China and Mongolia. In Natural history of Central Asia (ed. W. Granger), Vol. 11, Part 2, pp. 913–937. American Museum of Natural History, New York, USA.Google Scholar
  2. Chambers G.K. and MacAvoy E.S. 2000 Microsatellites: consensus and controversy. Comp. Biochem. Physiol. B 126, 455–476.CrossRefPubMedGoogle Scholar
  3. Faircloth B.C. 2008 MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94.CrossRefPubMedGoogle Scholar
  4. Geleta N. and Grausgruber H. 2012 Classifying Ethiopan Tetraploid wheat (Triticum turgidum L.) landraces by combined analysis of molecular and phenotypic data. Sci. Technol. Arts Res. J. 1, 1–9.CrossRefGoogle Scholar
  5. Hudson S.E. 2008 Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol. Ecol. Res. 8, 3–17.CrossRefGoogle Scholar
  6. Jarne P. and Lagoda P.J.L. 1996 Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11, 424–429.CrossRefPubMedGoogle Scholar
  7. Jian Z.H., Liu X.S., Hu J.B., Chen Y.H. and Feng J.C. 2012 Mining microsatellite markers from public expressed sequence tag sequences for genetic diversity analysis in pomegranate. J. Genet. 91, 353–358.CrossRefPubMedGoogle Scholar
  8. Ju Z., Wells M.C., Kazianis S., Rains J.D. and Walter R.B. 2005 An in silico mining for simple sequence repeats from expressed sequence tags of zebrafish, medaka, Fundulus and Xiphophorus. In Silico Biol. 5, 439–463.PubMedGoogle Scholar
  9. Schoebel C.N., Brodbeck S., Buehler D., Cornejo C., Gajurel J., Hartikainen H. et al. 2013 Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. J. Evol. Biol. 26, 600–611.CrossRefPubMedGoogle Scholar
  10. Norris R., Zhou K.Y., Zhou C.Q., Yang G., Kipatrick C.W. and Honeycutt R.L. 2004 The phylogenetic position of the zokors (Myospalacinae) and comments on the families of muroids (Rodentia). Mol. Phylogenet. Evol. 31, 972–978.CrossRefPubMedGoogle Scholar
  11. Selkoe K.A. and Toonen R.J. 2006 Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629.CrossRefPubMedGoogle Scholar
  12. Singleton G.R., Hinds L.A., Leirs H. and Zhang Z.B. 1999 Ecologically-based management of rodent. Australian Centre for International Agricultural Research, Canberra, Australia.Google Scholar
  13. Su J.H., Ji W.H., Wang J., Gleeson D.M., Zhou J.W., Hua L.M. and Wei Y.M. 2014 Phylogenetic relationships of extant zokors (Mysopalacidae) (Rodentia: Muridae) inferred from mitochondrial DNA sequences. Mitochondrial DNA 25, 135–141.Google Scholar
  14. Tóth G., Gáspári Z. and Jurka J. 2000 Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967–981.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Tsvirka M.V., Pavlenko M.V. and Korablev V.P. 2011 Genetic diversity and phylogenetic relationships in the zokor subfamily myospalacinae (Rodentia, Muridae) inferred from RAPD-PCR. Russ. J. Genet. 47, 205–215.CrossRefGoogle Scholar
  16. Wang Q.Y., Bian J.H. and Shi Y.Z. 1993 Influence of plateau zokors on the vegetation and soil nutrients in alpine meadow. Acta Theriol. Sin. 13, 31–37.Google Scholar
  17. Yu J.W., Dixit A., Ma K.H., Chung J.W. and Park Y.J. 2009 A study on relative abundance, composition and length variation of microsatellites in 18 underutilized crop species. Genet. Resour. Crop. Evol. 56, 237–246.CrossRefGoogle Scholar
  18. Zhang Y.M., Zhang Z.B. and Liu J.K. 2003 Burrowing rodents as ecosystem engineers: the ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau. Mammal Rev. 33, 284–294.CrossRefGoogle Scholar
  19. Zane L., Bargelloni L. and Patarnello T. 2002 Strategies for microsatellite isolation: a review. Mol. Ecol. 11, 1–16.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  • JUNHU SU
    • 1
    • 2
  • LIMIN HUA
    • 1
    • 2
  • JING WANG
    • 3
  • DIANNE M. GLEESON
    • 4
  • YANMING WEI
    • 1
  • ROBYN HOWITT
    • 5
  • WEIHONG JI
    • 1
    • 2
    • 6
  1. 1.College of Grassland ScienceGansu Agricultural University, Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu ProvinceLanzhouPeople’s Republic of China
  2. 2.Gansu Agricultural University-Massey University Research Centre for Grassland BiodiversityGansu Agricultural UniversityLanzhouPeople’s Republic of China
  3. 3.Lanzhou Vocational Technology CollegeLanzhouPeople’s Republic of China
  4. 4.Institute for Applied EcologyUniversity of CanberraBruceAustralia
  5. 5.Ecological Genetics LaboratoryLandcare ResearchAucklandNew Zealand
  6. 6.Institute of Natural SciencesMassey UniversityAucklandNew Zealand

Personalised recommendations