Advertisement

Journal of Genetics

, Volume 93, Supplement 2, pp 93–95 | Cite as

Identification of novel microsatellite markers for Saraca asoca, a medicinally important tree species in India

  • R. C. SUMANGALA
  • R. UMA SHAANKER
  • S. DAYANANDAN
  • R. VASUDEVA
  • G. RAVIKANTH
ONLINE RESOURCES
  • 90 Downloads

Introduction

Saraca asoca (Roxb.) Wilde (Caesalpiniaceae) is a medicinally important and globally vulnerable plant species found in the evergreen forests of India (Thakur et al.1989). S. asoca, commonly known as Ashoka tree, is considered as one of the sacred trees of India and is highly prized for its beautiful foliage and fragrant flowers. Almost all parts of the tree are known to have important medicinal properties including antiviral (Hattori et al.1995), oxytotic (Satyavati et al.1970), menorrhagic, anti-HIV (Kusumoto et al.1995) and antibacterial activities (Annapurna et al.1999). The flower extract is commonly used in diabetes and cancer treatments (Anonymous 1952; Mukherji et al.1970; Verghese et al.1992). Overharvesting of S. asoca due to its high medicinal value along with high deforestation rates, habitat fragmentation and illegal encroachments of its natural habitats have resulted in severe reduction in natural populations of this species (Gowda et al.2002). This species...

Keywords

Caesalpiniaceae medicinal plant microsatellites Saraca asoca 

Notes

Acknowledgement

This work was funded by the Department of Biotechnology (DBT), Government of India.

References

  1. Annapurna J., Bhalerao U. T. and Iyengar D. S. 1999 Antimicrobial activity of Saraca asoca leaves. Fitoterapia 70, 80–82.CrossRefGoogle Scholar
  2. Anonymous 1952 The wealth of India, vol. 3, pp. 234–238. D. E. CSIR, New Delhi, India.Google Scholar
  3. Creste S., Neto A. T. and Figueira A. 2001 Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol. Biol. Rep. 19, 299–306.CrossRefGoogle Scholar
  4. Doyle J. J. and Doyle J. L. 1987 A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.Google Scholar
  5. Excoffier L. G., Laval and Schneider S. 2005 Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinf. Online 1, 47–50.Google Scholar
  6. Glenn T. C. and Schable N. A. 2005 Isolating microsatellite DNA loci. Methods Enzymol. 395, 202–222.CrossRefPubMedGoogle Scholar
  7. Goudet J. 1995 FSTAT: a computer program to calculate F-statistics. J. Hered. 86, 485–486.CrossRefGoogle Scholar
  8. Gowda Balakrishna, Rajanna M. D., Chandrika K., Pradeep N., Shringeswara A. N., Kiran V. C. et al. 2002 Habitats of some rare, endangered and threatened plant populations in Karnataka for in-situ conservation and management. My Forest 38, 75–88.Google Scholar
  9. Guo S. and Thompson E. 1992 Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48, 361–372.CrossRefPubMedGoogle Scholar
  10. Hattori M., Nakabayashi T., Lim Y. A., Miyashio H., Kurokawa M., Gupta M. P. et al. 1995 Inhibitory effects of various Ayurvedic and Panamanian medicinal plants on the infection of Herpes Simplex Virus-1 in vitro and invivo. Phytother. Res. 9, 270–276.CrossRefGoogle Scholar
  11. Kusumoto I. T., Nakabayoshi T., Kida H., Miyashiro H., Hattori M., Namba T. and Shimotohno K. 1995 Screening of various plant extracts used in Ayurveda medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phytother. Res. 9, 180–184.CrossRefGoogle Scholar
  12. Mukherji S., Banerjee A. K. and Mitra B. N. 1970 Studies on plant antitumor agents. Indian J. Pharm. 32, 48–49.Google Scholar
  13. Rozen S. and Skaletsky H. J. 2000 Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics methods and protocols: methods in molecular biology (ed. S. Krawetz and S. Misener), pp. 365–386. Humana Press, Totowa, New Jersey, USA.Google Scholar
  14. Satyavati G. V., Prasad D. N., Sen S. P. and Das P. K. 1970 Oxytotic activity of a pure phenolic glycoside (P2) from Saraca indica. Indian J. Med. Res. 58, 660–663.PubMedGoogle Scholar
  15. Thakur R. S., Puri H. S. and Akhtar Husain 1989 Major medicinal plants of India, pp. 391–394. Central Institute of Medicinal and Aromatic Plants, Lucknow, India.Google Scholar
  16. Verghese C. D., Nair S. C. and Panikkar K. R. 1992 Potential anticancer activity of Saraca asoca extracts towards transplantable tumours in mice. Indian J. Pharm. Sci. 54, 37–40.Google Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  • R. C. SUMANGALA
    • 1
  • R. UMA SHAANKER
    • 2
    • 3
  • S. DAYANANDAN
    • 4
  • R. VASUDEVA
    • 5
  • G. RAVIKANTH
    • 1
  1. 1.Conservation GeneticsAshoka Trust for Research in Ecology and the Environment, Royal EnclaveBangaloreIndia
  2. 2.School of Ecology and ConservationUniversity of Agricultural SciencesBangaloreIndia
  3. 3.Department of Crop PhysiologyUniversity of Agricultural SciencesBangaloreIndia
  4. 4.Biology DepartmentConcordia UniversityMontrealCanada
  5. 5.Department of Forest Biology and Tree Improvement, College of ForestryUniversity of Agricultural SciencesDharwadIndia

Personalised recommendations