Journal of Genetics

, Volume 92, Issue 2, pp 175–181 | Cite as

Isolation, characterization and mapping of genes differentially expressed during fibre development between Gossypium hirsutum and G. barbadense by cDNA-SRAP

  • CHUANXIANG LIU
  • DAOJUN YUAN
  • XIANLONG ZHANG
  • ZHONGXU LIN
Research Article

Abstract

Gossypium hirsutum and G. barbadense are two cultivated tetraploid cotton species with differences in fibre quality. The fibre of G. barbadense is longer, stronger and finer than that of G. hirsutum. To isolate genes expressed differently between the two species during fibre development, cDNA-SRAP (sequence-related amplified polymorphism) was applied. This technique was used to analyse genes at different stages of fibre development in G. hirsutum cv. Emian22 and G. barbadense acc. 3-79, the parents of our interspecific mapping population. A total of 4096 SRAP primer combinations were used to screen polymorphism between the DNA of the parents, and 275 highly polymorphic primers were picked out to analyse DNA and RNA from leaves and fibres at different developmental stages of the parents. A total of 168 DNA fragments were isolated from gels and sequenced: 54, 30, 38 and 41 from fibres of 5, 10, 15 and 20 days post-anthesis, respectively, and five from multi stages. To genetically map these sequences, 104 sequence-specific primers were developed and were used to screened polymorphism between the mapping parents. Finally, six markers were mapped on six chromosomes of our backbone interspecific genetic map. This work can give us a primary knowledge of differences in mechanism of fibre development between G. hirsutum and G. barbadense.

Keywords

cotton fibre development cDNA-SRAP genetic mapping 

Notes

Acknowledgements

This work was financially supported by the National 863 High Technology Project (no. 2012AA101108-3) and the National Basic Research Program (no. 2010CB126001).

Supplementary material

12041_2013_238_MOESM1_ESM.pdf (541 kb)
(PDF 541 KB)

References

  1. Alabady M. S., Eunseog Y. and Wilkins T. A. 2008 Double feature selection and cluster analyses in mining of microarray data from cotton. BMC Genomics 9, 95.CrossRefGoogle Scholar
  2. Al-Ghazi Y., Bourot S., Arioli T., Dennis E. S. and Llewellyn D. J. 2009 Transcript profiling during fibre development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fibre quality. Plant Cell Physiol. 50, 1364–1381.PubMedCrossRefGoogle Scholar
  3. Arpat A. B., Waugh M., Sullivan J. P., Gonzales M., Frisch D., Main D. et al. 2004 Functional genomics of cell elongation in developing cotton fibres. Plant Mol. Biol. 54, 911–929.PubMedCrossRefGoogle Scholar
  4. Bao Y., Hu G., Flagel L. E., Salmon A., Bezanilla M., Paterson A. H. et al. 2011 Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc. Natl. Acad. Sci. USA 108, 21152–21157.PubMedCrossRefGoogle Scholar
  5. Basra A. S. and Malik C. P. 1984 Development of the cotton fibre. Int. Rev. Cytol. 89, 65–113.CrossRefGoogle Scholar
  6. Chaudhary B., Hovav R., Rapp R., Verma N., Udall J. A. and Wendel J. F. 2008 Global analysis of gene expression in cotton fibres from wild and domesticated Gossypium barbadense. Evol. Dev. 10, 567–582.PubMedCrossRefGoogle Scholar
  7. Chen X., Guo W., Liu B., Zhang Y., Song X., Chen Y. et al. 2012 Molecular mechanisms of fibre differential development between G. barbadense and G. hirsutum revealed by genetical genomics. PLoS ONE 7, e30056.CrossRefGoogle Scholar
  8. Claverie M., Souquet M., Jean J., Forestier-Chiron N., Lepitre V., Prè M. et al. 2012 cDNA-AFLP-based genetical genomics in cotton fibres. Theor. Appl. Genet. 124, 665–683.PubMedCrossRefGoogle Scholar
  9. Conesa A., Götz S., Garcia-Gomez J. M., Terol J., Talon M. and Robles M. 2005 Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676.PubMedCrossRefGoogle Scholar
  10. Götz S., García-Gómez J. M., Terol J., Williams T. D., Nueda M. J., Robles M. et al. 2008 High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435.PubMedCrossRefGoogle Scholar
  11. Gou J. Y., Wang L. J., Chen S. P., Hu W. L. and Chen X. Y. 2007 Gene expression and metabolite profiles of cotton fibre during cell elongation and secondary cell wall syntheisis. Cell Res. 17, 422–434.PubMedGoogle Scholar
  12. He D. H., Lin Z. X., Zhang X. L., Nie Y. C., Guo X. P., Zhang Y. X. and Li W. 2007 QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153, 181–197.CrossRefGoogle Scholar
  13. Hinchliffe D. J., Meredith W. R., Yeater K. M., Kim H. J., Woodward A. W., Chen Z. J. and Triplett B. A. 2010 Near-isogenic cotton germplasm lines that differ in fibre-bundle strength have temporal differences in fibre gene expression patterns as revealed by comparative high-throughput profiling. Theor. Appl. Genet. 120, 1347–1366.PubMedCrossRefGoogle Scholar
  14. Hovav R., Udall J., Hovav E., Rapp R., Flagel L. and Wendel J. 2008 A majority of cotton genes are expressed in single-celled fibre. Planta 227, 319–329.PubMedCrossRefGoogle Scholar
  15. Ji S. J., Lu Y. C., Feng J. X., Wei G., Li J., Shi Y. H. et al. 2003 Isolation and analyses of genes preferentially expressed during early cotton fibre development by substractive PCR and cDNA array. Nucleic Acids Res. 31, 2534–2543.PubMedCrossRefGoogle Scholar
  16. John M. E. 1995 Characterization of a cotton (Gossypium hirsutum L.) fibre-mRNA (Fb-b6). Plant Physiol. 107, 1478–1486.Google Scholar
  17. John M. E. and Crow L. J. 1992 Gene expression in cotton (Gossypium hirsutum L.) fibre: Cloning of the mRNAs. Proc. Natl. Acad. Sci. USA 89, 5769–5773.PubMedCrossRefGoogle Scholar
  18. John M. E. and Keller G. 1995 Characterization of mRNA for a proline-rich protein of cotton fibres. Plant Physiol. 108, 669–676.PubMedCrossRefGoogle Scholar
  19. Kim H. J. and Triplett B. A. 2001 Cotton fibre growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127, 1361–1366.PubMedCrossRefGoogle Scholar
  20. Kosambi D. D. 1994 The estimation of map distance from recombination values. Ann. Eugen. 12, 172–175.Google Scholar
  21. Lacape J. M., Nguyen T. B., Courtois B., Belot J. L., Giband M., Gourlot J. P. et al. 2005 QTL analysis of cotton fibre quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci. 45, 123–140.Google Scholar
  22. Lacape J. M., Llewellyn D., Jacobs J., Arioli T., Becker D., Calhoun S. et al. 2010 Meta-analysis of cotton fibre quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol. 10, 132.PubMedCrossRefGoogle Scholar
  23. Lang A. G. 1938 The origin of lint and fuzz hairs of cotton. J. Agric. Res. 56, 507–521.Google Scholar
  24. Lee J. J., Hassan O. S. S., Gao W., Wei N. E., Kohel R. J., Chen X. Y. et al. 2006 Developmental and gene expression analyses of a cotton naked seed mutant. Planta 223, 418–432.PubMedCrossRefGoogle Scholar
  25. Lee J. J., Woodward A. W. and Chen Z. J. 2007 Gene expression changes and early events in cotton fibre development. Ann. Bot. 100, 1391–1401.PubMedCrossRefGoogle Scholar
  26. Li G. and Quiros C. F. 2001 Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461.CrossRefGoogle Scholar
  27. Li G., Gao M., Yang B. and Quiros C. F. 2003 Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor. Appl. Genet. 107, 168–180.PubMedCrossRefGoogle Scholar
  28. Lin Z. X., He D. J. and Zhang X. L. 2005 Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breeding 124, 180–187.CrossRefGoogle Scholar
  29. Lin Z., Zhang Y., Zhang X. and Guo X. 2009 A high-density integrative linkage map for Gossypium hirsutum. Euphytica 166, 35–45.CrossRefGoogle Scholar
  30. Liu D., Zhang X., Tu L., Zhu L. and Guo X. 2006 Isolation by suppression-subtractive hybridization of genes preferentially expressed during early and later fibre development stages in cotton. Mol. Biol. 40, 741–749.CrossRefGoogle Scholar
  31. Liu H. W., Wang X. F., Pan Y. X., Shi R. F., Zhang G. Y. and Ma Z. Y. 2009 Mining cotton fibre strength candidate genes based on transcriptome mapping. Chin. Sci. Bull. 54, 4651–4657.CrossRefGoogle Scholar
  32. Liu R., Wang B., Guo W., Wang L. and Zhang T. 2011 Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2. Theor. Appl. Genet. 123, 439–454.PubMedCrossRefGoogle Scholar
  33. Loguercio L. L., Zhang J. Q. and Wilkins T. A. 1999 Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol. Gen. Genet. 261, 660–671.CrossRefGoogle Scholar
  34. Ma X., Xing C., Guo L., Gong Y., Wang H., Zhao Y. and Wu J. 2008 Analysis of differentially expressed genes in genic male sterility cotton (Gossypium hirsutum L.) using cDNA-AFLP. J. Genet. Genomics 34, 536–543.CrossRefGoogle Scholar
  35. Mei M., Syed N. H., Gao W., Thaxton P. M., Smith C. W., Stelly D. M. and Chen Z. J. 2004 Genetic mapping and QTL analysis of fibre related traits in cotton (Gossypium). Theor. Appl. Genet. 108, 280–291.PubMedCrossRefGoogle Scholar
  36. Orford S. J. and Timmis J. N. 1998 Specific expression of an expansin gene during elongation of cotton fibres. Biochim. Biophys. Acta 1398, 342–346.PubMedCrossRefGoogle Scholar
  37. Pan Y. X., Ma J., Zhang G. Y., Han G. Y., Wang X. F. and Ma Z. Y. 2007 cDNA-AFLP profiling for the fibre development stage of secondary cell wall synthesis and transcriptome mapping in cotton. Chin. Sci. Bull. 52, 2358–2364.CrossRefGoogle Scholar
  38. Paterson A. H., Brubaker C. and Wendel J. F. 1993 A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol. Biol. Rep. 11, 122–127.CrossRefGoogle Scholar
  39. Rapp R. A., Haigler C. H., Flagel L., Hovav R. H., Udall J. A. and Wendel J. F. 2010 Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol. 8, 139.PubMedCrossRefGoogle Scholar
  40. Ruan Y. L. and Chourey P. S. 1998 A fibreless seed mutation in cotton is associated with lack of fibre cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol. 118, 399–406.PubMedCrossRefGoogle Scholar
  41. Shi Y. H., Zhu S. W., Mao X. Z., Feng J. X., Qin Y. M., Zhang L. et al. 2006 Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fibre cell elongation. Plant Cell 18, 651–664.PubMedCrossRefGoogle Scholar
  42. Smart L. B., Vojdani F., Maeshima M. and Wilkins T. A. 1998 Genes involved in osmoregulation during turgordriven cell expansion of developing cotton fibres are differentially regulated. Plant Physiol. 116, 1539–1549.PubMedCrossRefGoogle Scholar
  43. Song P. and Allen R. D. 1997 Identification of a cotton fibre-specific acyl carrier protein cDNA by differential display. Biochim. Biophys. Acta 1351, 305–312.PubMedCrossRefGoogle Scholar
  44. Stam P. 1993 Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J. 3, 739–744.CrossRefGoogle Scholar
  45. Taliercio E. W. and Boykin D. 2007 Analysis of gene expression in cotton fibre initials. BMC Plant Biol. 7, 22.PubMedCrossRefGoogle Scholar
  46. Tu L. L., Zhang X. L., Liang S. G., Liu D. Q., Zhu L. F., Zeng F. C. et al. 2007 Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fibre development. Plant Cell Rep. 26, 1309–1320.PubMedCrossRefGoogle Scholar
  47. Udall J. A., Swanson J. M., Haller K., Rapp R. A., Sparks M. E., Hatfield J. et al. 2006 A global assembly of cotton ESTs. Genome Res. 16, 441–450.PubMedCrossRefGoogle Scholar
  48. Udall J. A., Flagel L. E., Cheung F., Woodward A. W., Hovav R., Rapp R. A. et al. 2007 Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics 8, 81.PubMedCrossRefGoogle Scholar
  49. Wang Q. Q., Liu F., Chen X. S., Ma X. J., Zeng H. Q. and Yang Z. M. 2010 Transcriptome profiling of early developing cotton fibre by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96, 369–376.PubMedCrossRefGoogle Scholar
  50. Whittaker D. J. and Triplett B. A. 1999 Gene-specific changes in α-tubulin transcript accumulation in developing cotton fibres. Plant Physiol. 121, 181–188.PubMedCrossRefGoogle Scholar
  51. Wu Y., Rozenfeld S., Defferrard A., Ruggiero K., Udall J. A., Kim H. et al. 2005 Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling. Mol. Gen. Genomics 274, 477–493.CrossRefGoogle Scholar
  52. Wu Y., Machado A. C., White R. G., Llewellyn D. J. and Dennis E. S. 2006 Identification of early genes expressed during cotton fibre initiation using cDNA microarrays. Plant Cell Physiol. 47, 107–127.PubMedCrossRefGoogle Scholar
  53. Wu Y., Llewellyn D. J., White R., Ruggiero K., Al-Ghazi Y. and Dennis E. S. 2007 Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta 226, 1475–1490.PubMedCrossRefGoogle Scholar
  54. Wu Z., Soliman K. M., Bolton J. J., Saha S. and Jenkins N. J. 2008 Identification of differentially expressed genes associated with cotton fibre development in a chromosomal substitution line (CS-B22sh). Funct. Integr. Genomics 8, 165–174.PubMedCrossRefGoogle Scholar
  55. Yang S. S., Cheung F., Lee J. J., Ha M., Wei N. E., Sze S.-H. et al. 2006 Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fibre cell development in allotetraploid cotton. Plant J. 47, 761–775.CrossRefGoogle Scholar
  56. Yu Y., Yuan D. J., Liang S. G., Li X. M., Wang X. Q., Lin Z. X. and Zhang X. L. 2011 Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12, 15.PubMedCrossRefGoogle Scholar
  57. Yuan D., Tu L. and Zhang X. 2011 Generation, annotation and analysis of first large-scale expressed sequence tags from developing fibre of Gossypium barbadense L. PLoS ONE 6, e22758.CrossRefGoogle Scholar
  58. Zhang D., Hrmova M., Wan C. H., Wu C., Balzen J., Cai W. et al. 2004 Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol. Biol. 54, 353–372.PubMedCrossRefGoogle Scholar
  59. Zhu L. F., Tu L. L., Zhen F. C., Liu D. Q. and Zhang X. L. 2005 An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agromomica Sin. 31, 1657–1659.Google Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  • CHUANXIANG LIU
    • 1
  • DAOJUN YUAN
    • 1
  • XIANLONG ZHANG
    • 1
  • ZHONGXU LIN
    • 1
  1. 1.National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations