Advertisement

Journal of Genetics

, Volume 93, Supplement 2, pp 8–14 | Cite as

Haplotypes of bovine FoxO1 gene sequence variants and association with growth traits in Qinchuan cattle

  • YUJIA SUN
  • JING XUE
  • WENJIAO GUO
  • MENJIAO LI
  • YONGZHEN HUANG
  • XIANYONG LAN
  • CHUZHAO LEI
  • CHUNLEI ZHANG
  • HONG CHEN
Online Resources

Introduction

The winged helix or forkhead box (Fox) class of transcription factors constitutes a family of structurally related transcriptional activators that have been identified in species ranging from yeast to human. The first member of this transcription factor class was identified as a nuclear homeotic gene involved in embryonic development in Drosophilamelanogaster (Weigel et al., 1989).

The FoxO family of forkhead transcription factors represents a subfamily within the larger group of Fox transcription factors. Mammalian FoxO proteins (FoxO1, FoxO3a, FoxO4 and FoxO6), which are homologous to Caenorhabditis elegans protein DAF-16, belong to the O (‘other’) class of the Fox superfamily (Kaestner et al., 2000; Barthel et al., 2005). As transcription factors in the nucleus, the primary function of FoxO proteins is to bind to their cognate DNA target sequences as monomers. The cocrystal structure of another Fox protein, HNF-3γ, with DNA shows that there are 14 protein–DNA contacts...

Keywords

FoxO1 gene growth traits haplotype combination Qinchuan cattle sequence variants 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 30972080 and 30901023), Agricultural Science and Technology Innovation Projects of Shaanxi province (no. 2012NKC01-13), Program of National Beef Cattle Industrial Technology System (CARS-38).

References

  1. Accili D. and Arden K. C. 2004 FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426.CrossRefPubMedGoogle Scholar
  2. Barthel A., Schmoll D. and Unterman T. G. 2005 FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16, 183–189.CrossRefPubMedGoogle Scholar
  3. Biggs Iii W. H., Meisenhelder J., Hunter T., Cavenee W. K. and Arden K. C. 1999 Protein kinase B / Akt - mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA 96, 7421–7426.CrossRefGoogle Scholar
  4. Boura E., Silhan J., Herman P., Vecer J., Sulc M., Teisinger J. et al. 2007 Both the N - terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. J. Biol. Chem. 282, 8265–8275.CrossRefPubMedGoogle Scholar
  5. Burgering B. M. and Medema R. H. 2003 Decisions on life and death: FOXO forkhead transcription factors are in command when PKB/Akt is off duty. J. Leukoc. Biol. 73, 689–701.CrossRefPubMedGoogle Scholar
  6. Clark K. L., Halay E. D., Lai E. and Burley S. K. 1993 Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420.CrossRefPubMedGoogle Scholar
  7. Fredericks W. J., Galili N., Mukhopadhyay S., Rovera G., Bennicelli J., Barr F. G. and Rauscher F. J. 1995 The PAX3-FKHR fusion protein created by the t (2; 13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol. Cell Biol. 15, 1522–1535.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Furuyama T., Nakazawa T., Nakano I. and Mori N. 2000 Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gilley J., Coffer P. J. and Ham J. 2003 FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J. Cell. Biol. 162, 613–622.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Greer E. L. and Brunet A. 2005 FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425.CrossRefPubMedGoogle Scholar
  11. Hribal M. L., Nakae J., Kitamura T., Shutter J. R. and Accili D. 2003 Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J. Cell Biol. 162, 535–541.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kaestner K. H., Knochel W. and Martinez D. E. 2000 Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14, 142–146.PubMedGoogle Scholar
  13. Kamei Y., Miura S., Suzuki M., Kai Y., Mizukami J., Taniguchi T. et al. 2004 Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. Biol. Chem. 279, 41114–41123.CrossRefGoogle Scholar
  14. Kyo S., Sakaguchi J., Kiyono T., Shimizu Y., Maida Y., Mizumoto Y. et al. 2011 Forkhead transcription factor FOXO1 is a direct target of progestin to inhibit endometrial epithelial cell growth. Clin. Cancer Res. 17, 525.CrossRefPubMedGoogle Scholar
  15. Mei Y., Wang Z., Zhang L., Zhang Y., Li X., Liu H. et al. 2012 Regulation of neuroblastoma differentiation by forkhead transcription factors FOXO1/3/4 through the receptor tyrosine kinase PDGFRA. Proc. Natl. Acad. Sci. USA 109, 4898– 4903.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Nakae J., Kitamura T., Kitamura Y., Biggs W. H. 3rd, Arden K. C. and Accili D. 2003 The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4, 119–129.CrossRefPubMedGoogle Scholar
  17. Posada D. and Crandall K. A. 2001 Intraspecific gene genealogies: trees grafting into networks. Trends Ecol. Evol. 16, 37–45.CrossRefPubMedGoogle Scholar
  18. Sambrook J. and Russell D. W. 2001 Molecular cloning: a laboratory manual, vol. 3, 3rd edition. Cold Spring Harbor Laboratory Press, New York, USA.Google Scholar
  19. Shi Y. Y. and He L. 2005 SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15, 97–98.CrossRefPubMedGoogle Scholar
  20. Teixeira C. C., Liu Y. X., Thant L. M., Pang J., Palmer G. and Alikhani M. 2010 Foxo1, a novel regulator of osteoblast differentiation and skeletogenesis. J. Biol. Chem. 285, 31055–31065.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Tothova Z., Kollipara R., Huntly B. J., Lee B. H., Castrillon D. H., Cullen D. E. et al. 2007 FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2, 325–339.CrossRefGoogle Scholar
  22. Tran H., Brunet A., Griffith E. C. and Greenberg M. E. 2003 The many forks in FOXO’s road. Sci. STKE. RE5.Google Scholar
  23. Weigel D., Jurgens G., Kuttner F., Seifert E. and Jackle H. 1989 The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57, 645–658.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  • YUJIA SUN
    • 1
  • JING XUE
    • 1
  • WENJIAO GUO
    • 1
  • MENJIAO LI
    • 1
  • YONGZHEN HUANG
    • 1
  • XIANYONG LAN
    • 1
  • CHUZHAO LEI
    • 1
  • CHUNLEI ZHANG
    • 2
  • HONG CHEN
    • 1
  1. 1.College of Animal Science and TechnologyNorthwest A and F University, Shaanxi Key Laboratory of Molecular Biology for AgricultureYanglingPeople’s Republic of China
  2. 2.Institute of Cellular and Molecular BiologyJiangsu Normal UniversityXuzhouPeople’s Republic of China

Personalised recommendations